DOI QR코드

DOI QR Code

Inhibition of Clostridium perfringens using Bacteriophages and Bacteriocin Producing Strains

  • Heo, Sunhak (Department of Animal Science and Technology, Chung-Ang University) ;
  • Kim, Min Gon (Department of Animal Science and Technology, Chung-Ang University) ;
  • Kwon, Mirae (Department of Animal Science and Technology, Chung-Ang University) ;
  • Lee, Hee Soo (Department of Animal Science and Technology, Chung-Ang University) ;
  • Kim, Geun-Bae (Department of Animal Science and Technology, Chung-Ang University)
  • Received : 2017.12.08
  • Accepted : 2017.12.21
  • Published : 2018.02.28

Abstract

In this study, we isolated and characterized a bacteriocin-producing strain and two bacteriophages (P4, A3), showing antimicrobial effects against Clostridium perfringens, from chicken and swine feces by the spot-on-the lawn antagonism method. The selected strain was identified as Streptococcus hyointestinalis by 16S rRNA gene sequencing. The bacteriocin from the isolated strain exhibited strong inhibitory activity against four strains of C. perfringens and all the tested strains of Listeria monocytogenes, and the bacteriocin were highly heat- and pH-stable even at pH 2, pH 10 and $121^{\circ}C$ for 15 min. We also evaluated the combined effects of the isolated bacteriocin and phages. Combining the phage treatments and bacteriocin resulted in a synergetic effect compared with the phage or the bacteriocin alone. In addition, during the probiotic test, the bacteriocin-producing S. hyointestinalis B19 strain reduced the population of C. perfringens significantly. Treatment with S. hyointestinalis B19 and a cocktail of lytic bacteriophages eradicated the C. perfringens KCTC $3269^T$, completely. Consequently, the isolated bacteriocin and bacteriophages represent candidates for effective biocontrol of C. perfringens, and bacteriocin-producing S. hyointestinalis B19 is a potential probiotic candidate for use in domestic animals.

Keywords

References

  1. Albino LA, Rostagno MH, Hungaro HM, Mendonca RC. 2014. Isolation, characterization, and application of bacteriophages for Salmonella spp. biocontrol in pigs. Foodborne Pathog Dis 11:602-609. https://doi.org/10.1089/fpd.2013.1600
  2. Bryant MP. 1972. Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr. 25:1324-1328. https://doi.org/10.1093/ajcn/25.12.1324
  3. Caly DL, D'Inca R, Auclair E, Drider D. 2015. Alternatives to antibiotics to prevent necrotic enteritis in broiler chickens: a microbiologist's perspective. Front Microbiol 6:1336.
  4. Carvalho C, Susano M, Fernandes E, Santos S, Gannon B, Nicolau A, Azeredo J. 2010. Method for bacteriophage isolation against target Campylobacter strains. Lett Appl Microbiol 50:192-197. https://doi.org/10.1111/j.1472-765X.2009.02774.x
  5. Cotter PD, Ross RP, Hill C. 2013. Bacteriocins-a viable alternative to antibiotics? Nat Rev Microbiol 11:95-105. https://doi.org/10.1038/nrmicro2937
  6. Devriese L, Kilpper-Balz R, Schleifer K. 1988. Streptococcus hyointestinalis sp. nov. from the gut of swine. Int J Syst Evol Micr 38:440-441.
  7. Dunne C, O'Mahony L, Murphy L, Thornton G, Morrissey D, O'Halloran S, Feeney M., Flynn S, Fitzgerald G, Daly C, Kiely B., O'Sullivan G, Shanahan F, Collins K. 2001. In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am J Clin Nutr 73(suppl.):386S-392S. https://doi.org/10.1093/ajcn/73.2.386s
  8. Dykes G, Moorhead S. 2002. Combined antimicrobial effect of nisin and a listeriophage against Listeria monocytogenes in broth but not in buffer or on raw beef. Int J Food Microbiol 73:71-81. https://doi.org/10.1016/S0168-1605(01)00710-3
  9. Enderson L, O'Mahony J, Hill C, Ross, RP, McAuliffe O, Coffey A. 2014. Phage therapy in the food industry. Annu. Rev Food Sci Technol 5:327-349. https://doi.org/10.1146/annurev-food-030713-092415
  10. Galvez A, Abriouel H, Lopez RL, Omar NB. 2007. Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120:51-70. https://doi.org/10.1016/j.ijfoodmicro.2007.06.001
  11. Grass JE, Gould LH, Mahon, BE. 2013. Epidemiology of foodborne disease outbreaks caused by Clostridium perfringens, United States, 1998-2010. Foodborne Pathog Dis 10:131-136. https://doi.org/10.1089/fpd.2012.1316
  12. Greer GG. 2005. Bacteriophage control of foodborne bacteria. J Food Prot 68:1102-1111. https://doi.org/10.4315/0362-028X-68.5.1102
  13. Han SK, Shin MS, Park HE, Kim SY, Lee WK. 2014. Screening of bacteriocin-producing Enterococcus faecalis strains for antagonistic activities against Clostridium perfringens. Korean J Food Sci An 34:614-621. https://doi.org/10.5851/kosfa.2014.34.5.614
  14. Joerger R. 2003. Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poultry Sci 82:640-647. https://doi.org/10.1093/ps/82.4.640
  15. Lee JY, Choi NS, Chun SS, Moon JY, Kang DO. 2015. Purification and characterization of the bacteriocin produced by Lactococcus sp. KD 28 isolated from kimchi. J Life Sci 25:180-188. https://doi.org/10.5352/JLS.2015.25.2.180
  16. Leverentz B, Conway WS, Camp MJ, Janisiewicz WJ, Abuladze T, Yang M, Sulakvelidze A. 2003. Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl Environ Microbiol 69:4519-4526. https://doi.org/10.1128/AEM.69.8.4519-4526.2003
  17. Martinez B, Obeso JM, Rodríguez A, Garcia P. 2008. Nisin-bacteriophage crossresistance in Staphylococcus aureus. Int J Food Microbiol 122:253-258. https://doi.org/10.1016/j.ijfoodmicro.2008.01.011
  18. Mayr-Harting A, Hedges A, Berkeley R. 1972. Chapter VII methods for studying bacteriocins. Method Microbiol 7:315-422.
  19. O'Connor PM, O'Shea EF, Guinane CM, O'Sullivan O, Cotter PD, Ross RP, Hill C. 2015. Nisin H is a new nisin variant produced by the gut-derived strain Streptococcus hyointestinalis DPC6484. Appl Environ Microbiol 81:3953-3960. https://doi.org/10.1128/AEM.00212-15
  20. O'Shea EF, Gardiner GE, O'Connor PM, Mills S, Ross RP, Hill C. 2009. Characterization of enteriocin- and salivaricin-producing lactic acid bacteria from the mammalian gastrointestinal tract. FEMS Microbiol Lett 291:24-34. https://doi.org/10.1111/j.1574-6968.2008.01427.x
  21. Sabah AAJ, Richard GL. 2014. Natural solution to antibiotic resistance: bacteriophages 'The Living Drugs'. World J Microbiol Biotechnol 30:2153-2170. https://doi.org/10.1007/s11274-014-1655-7
  22. Salama S, Bolton F, Hutchinson D. 1989. Improved method for the isolation of Campylobacter jejuni and Campylobacter coli bacteriophages. Lett Appl Microbiol 8:5-7. https://doi.org/10.1111/j.1472-765X.1989.tb00211.x
  23. Songer JG. 1996. Clostridial enteric diseases of domestic animals. Clin Microbiol Rev 9:216-234. https://doi.org/10.1128/CMR.9.2.216
  24. Teo AYL, Tan HM. 2005. Inhibition of Clostridium perfringens by a novel strain of Bacillus subtilis isolated from the gastrointestinal tracts of healthy chickens. Appl Environ Microbiol 71:4185-4190. https://doi.org/10.1128/AEM.71.8.4185-4190.2005
  25. Timbermont L, De Smet L, Van Nieuwerburgh F, Parreira VR, Van Driessche G, Haesebrouck F, Devreese B. 2014. Perfrin, a novel bacteriocin associated with netB positive Clostridium perfringens strains from broilers with necrotic enteritis. Vet Res 45:40-49. https://doi.org/10.1186/1297-9716-45-40
  26. Todorov SD, Dicks LMT. 2005. Screening for bacteriocin-producing lactic acid bacteria from boza, a traditional cereal beverage from Bulgaria Comparison of the bacteriocins. Process Biochem 41:11-19.
  27. Uzal FA, Freedman JC, Shrestha A, Theoret JR, Garcia J, Awad MM, McClane BA. 2014. Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease. Future Microbiol 9:361-377. https://doi.org/10.2217/fmb.13.168
  28. Van Immerseel F, Rood JI, Moore RJ, Titball RW. 2009. Rethinking our understanding of the pathogenesis of necrotic enteritis in chickens. Trends Microbiol 17:32-36. https://doi.org/10.1016/j.tim.2008.09.005
  29. Villani F, Pepe O, Mauriello G, Salzano G, Moschetti G. 1995. Antilisterial activity of thermophilin 347, a bacteriocin produced by Streptococcus thermophilus. Int J Food Microbiol 25:179-190. https://doi.org/10.1016/0168-1605(94)00153-W
  30. Zinno P, Janzen T, Bennedsen M, Ercolini D, Mauriello G. 2010. Characterization of Streptococcus thermophilus lytic bacteriophages from mozzarella cheese plants. Int J Food Microbiol 138:137-144. https://doi.org/10.1016/j.ijfoodmicro.2009.12.008

Cited by

  1. The Use of Bacteriophages in the Poultry Industry vol.10, pp.5, 2018, https://doi.org/10.3390/ani10050872
  2. Complete genome sequence of Streptococcus hyointestinalis B19, a strain producing bacteriocin, isolated from chicken feces vol.62, pp.3, 2020, https://doi.org/10.5187/jast.2020.62.3.420
  3. Broadening and Enhancing Bacteriocins Activities by Association with Bioactive Substances vol.17, pp.21, 2020, https://doi.org/10.3390/ijerph17217835
  4. Phage and phage lysins: New era of bio‐preservatives and food safety agents vol.86, pp.8, 2018, https://doi.org/10.1111/1750-3841.15843
  5. Antimicrobial activity of fermented Maillard reaction products, novel milk-derived material, made by whey protein and Lactobacillus rhamnosus and Lactobacillus gasseri on Clostridium perfringens vol.34, pp.9, 2018, https://doi.org/10.5713/ab.20.0290
  6. Complete genome sequence of Clostridium perfringens B20, a bacteriocin-producing pathogen vol.63, pp.6, 2021, https://doi.org/10.5187/jast.2021.e113