DOI QR코드

DOI QR Code

Effect of Silane Coupling Agent on Physical Properties of Polypropylene (PP)/Kenaf Fiber (KF) Felt Composites

폴리프로필렌/케나프 섬유 펠트 복합체 물성에 대한 실란커플링제의 영향

  • Ku, Sun Gyo (Major in Polymer Science and Engineering (Institute of IT Convergence Technology), Kongju National University) ;
  • Kim, Yu Shin (Major in Polymer Science and Engineering (Institute of IT Convergence Technology), Kongju National University) ;
  • Kim, Dong Won (Seoyounewha, Anyang) ;
  • Kim, Ki Sung (Seoyounewha, Anyang) ;
  • Kim, Youn Cheol (Major in Polymer Science and Engineering (Institute of IT Convergence Technology), Kongju National University)
  • 구선교 (공주대학교 고분자공학전공(IT 융합기술연구소)) ;
  • 김유신 (공주대학교 고분자공학전공(IT 융합기술연구소)) ;
  • 김동원 (서연이화) ;
  • 김기성 (서연이화) ;
  • 김연철 (공주대학교 고분자공학전공(IT 융합기술연구소))
  • Received : 2017.09.27
  • Accepted : 2017.11.07
  • Published : 2018.02.10

Abstract

In order to increase the compatibility of polypropylene (PP) and kenaf fiber (KF) felt, PP/KF and PP/KF/polyurethane (PU) felt composites were prepared by treating KF with three kinds of silane coupling agents. The concentration of silane coupling agents was fixed at 1 wt%. The chemical reaction between KF and silane coupling agents was confirmed by the existence of Si-O-Si and Si-O-C functional group bands appeared on FT-IR and X-ray photoelectron spectra (XPS). Thermal properties of PP/KF composites were investigated by DSC and TGA, and the thermal stability of PP/KF composites with treated KF increased. Based on tensile, flexural and impact properties of PP/KF and PP/KF/PU composites, 1-2 wt% of (3-aminopropyl)triethoxysilane (APS) contents were the optimum formulation as a compatibilizer. The tensile and flexural strength of the felt composites treated with the silane coupling agents were improved. This is mainly due to the improvement in the compatibility between PP and KF, which was confirmed by SEM images of the fractured surfaces after tension tests.

폴리프로필렌(PP)과 케나프섬유(KF) 펠트의 상용성 개선을 위해 3종류의 실란 커플링제 1 wt%를 PP/KF 펠트에 처리하여 PP/KF와 PP/KF/폴리우레탄(PU) 펠트 복합체를 제조하였다. KF에 실란 커플링제 결합여부 확인을 위해 Si-O-Si와 Si-O-C 작용기를 적외선분광기(FT-IR)와 X선 광전자분광분석기(XPS)를 이용하여 측정하였다. 열적 특성분석을 위해 시차주사열용량분석기와 열중량분석기를 이용하였으며, 실란 커플링제가 처리된 PP/KF 복합체의 열안정성이 증가하는 결과를 보여주었다. PP/KF와 PP/KF/PU 복합체의 인장, 굴곡 그리고 충격특성을 분석한 결과 기계적 특성의 개선효과는 (3-Aminopropyl)triethoxysilane (APS) 1-2 wt%에서 가장 우수하였다. 이와 같은 기계적물성의 개선은 실란 작용기가 천연섬유와 결합하여 PP와 KF의 상용성을 향상시킨 결과로 해석할 수 있고, 인장시험 후 파단면의 SEM 결과를 통해 확인하였다.

Keywords

References

  1. B. S. Han, Light weight technologies of automotive parts for green car, Auto J., 33, 57-60 (2011).
  2. B. M. An, Sintering and heat treatment characteristics of Al-Cu-Mg powder metallurgy alloy for lightweight automotive parts, J. Korean Soc. Manuf. Technol. Eng., 23, 153-156 (2014).
  3. K. J. Cha and H. B. Lee, Flow analysis of super engineering plastic plunger in automobile ABS, Proceedings of Korean Society of Manufacturing Process Engineers, October 7-8, Sacheon, Korea (2015).
  4. K. D. Lee and W. K. Lee, A development trend of bio-plastics in automotive, Auto J., 31, 44-51 (2009).
  5. D. H. Cho, S. G. Lee, W. H. Park, and S. O. Han, Eco-friendly biocomposite materials using biofibers, Polym. Sci. Technol., 13, 460-476 (2002).
  6. H. D. Rozman, S. H. Shannon-Ong, A. B. Azizah, and G. S. Tay, Preliminary study of non-woven composite: Effect of needle punching and kenaf fiber loadings on non-woven thermoplastic composites prepared from kenaf and polypropylene fiber, J. Polym. Environ., 21, 1032-1039 (2013).
  7. D. H. Cho and H. J. Kim, Naturally cyclable biocomposites, Elast. Compos., 44, 13-21 (2009).
  8. S. J. Kim, C. S. Yoo, G. H. Kim, and C. S. Ha, Polypropylene-natural composites; Rheological properties during mixing and thermal properties, J. Adhes. Interface, 9, 24-29 (2008).
  9. J. S. Oh, S. H. Lee, S. H. Bumm, and K. J. Kim, Nano-kenaf cellulose effects on improved mechanical properties of polypropylene composite, Polymer(Korea), 37, 613-617 (2013).
  10. Y. Chen, O. Chiparus, L. Sun, I. Negulescu, D. V. Parikh, and T. A. Calamari, Natural fibers for automotive nonwoven composites, J. Ind. Text., 35, 47-62 (2005).
  11. B. H. Lee, H. J. Kim, and W. R. Yu, Fabrication of Long and Discontinuous Natural Fiber Reinforced Polypropylene Biocomposites and Their Mechanical Properties, Fiber. Polym., 10, 83-90 (2009).
  12. K. Y. Kim, S. J. Doh, J. N. Im, W. Y. Jeong, H. J. An, and D. Y. Lim, Effects of binder fibers and bonding processes on PET hollow fiber nonwovens for automotive cushion materials, Fiber. Polym., 14, 637-646 (2013).
  13. H. N. Dhakal, Z. Y. Zhang, M. O. W. Richardson, and O. A. Z. Errajjhi, The low velocity impact response of non-woven hemp fibre reinforced unsaturated polyester composite, Compos. Struct., 81, 559-567 (2007).
  14. S. J. Kim, C. S. Yoo, and C. S. Ha, Rheological properties during mixing and thermal properties of polypropylene/natural fiber composites: II. Effects of a compatibilizer, J. Adhes. Interface, 10, 23-29 (2009).
  15. J. M. Park, S. T. Quang, B. S. Hwang, and K. L. DeVries, Interfacial evaluation of modified Jute and Hemp fibers/polypropylene (PP)-maleic anhydride polypropylene copolymers (PP-MAPP) composites using micromechanical technique and nondestructive acoustic emission, Compos. Sci. Technol., 66, 2686-2699 (2006).
  16. N. Sgriccia, M. C. Hawley, and M. Misra, Characterization of natural fiber surfaces and natural fiber composites, Composites A, 39, 1632-1637 (2008).
  17. X. Li, L. G. Tabil, and S. Panigrahi, Chemical treatments of natural fiber for use in natural fiber-reinforced composites; A review, J. Polym. Environ., 15, 25-33 (2007).
  18. D. M. Panaitescu, C. A. Nicolae, Z. Vuluga, C. Vitelaru, C. G. Sanporean, C. Zaharia, D. Florea, and G. Vasilievici, Influence of hemp fibers with modified surface on polypropylene composites, J. Ind. Eng. Chem., 37, 137-146 (2016).
  19. Y. Xie, C. A. S. Hill, Z. Xiao, H. Militz, and C. Mai, Silane coulping agents used for natural fiber/polymer composites: A review, Composites A, 41, 806-819 (2010).
  20. G. S. Ahmed, M. Gilbert, S. Mainprize, and M. Rogerson, FTIR analysis of silane grafted high density polyethylene, Plast. Rubber Compos., 38, 13-20 (2009).
  21. H. Li, R. Wang, H. Hu, and W. Liu, Surface modification of self-healing poly(urea-formaldehyde) microcapsules using silane-coupling agent, Appl. Surf. Sci., 255, 1894-1900 (2008).
  22. J. W. Lee, J. H. Kim, S. H. Ji, K. S. Kim, and Y. C. Kim, Effect of thermally expandable microcapsule on the foaming behavior of HDPE/kenaf composite, Polymer(Korea), 39, 572-578 (2015).

Cited by

  1. 폴리프로필렌-폴리(에틸렌 테레프탈레이트)/케냐프 펠트 복합체의 물리적 특성에 미치는 펠트 제조방향의 영향 vol.42, pp.4, 2018, https://doi.org/10.7317/pk.2018.42.4.695