DOI QR코드

DOI QR Code

Structural Effect of Conductive Carbons on the Adhesion and Electrochemical Behavior of LiNi0.4Mn0.4Co0.2O2 Cathode for Lithium Ion Batteries

  • Latifatu, Mohammed (Department of Applied Chemistry & Biotechnology, Hanbat National University) ;
  • Bon, Chris Yeajoon (Department of Applied Chemistry & Biotechnology, Hanbat National University) ;
  • Lee, Kwang Se (Department of Applied Chemistry & Biotechnology, Hanbat National University) ;
  • Hamenu, Louis (Department of Chemistry School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana) ;
  • Kim, Yong Il (Department of Energy Engineering, Hanyang University) ;
  • Lee, Yun Jung (Department of Energy Engineering, Hanyang University) ;
  • Lee, Yong Min (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science & Technology) ;
  • Ko, Jang Myoun (Department of Applied Chemistry & Biotechnology, Hanbat National University)
  • Received : 2018.06.08
  • Accepted : 2018.08.08
  • Published : 2018.12.31

Abstract

The adhesion strength as well as the electrochemical properties of $LiNi_{0.4}Mn_{0.4}Co_{0.2}O_2$ electrodes containing various conductive carbons (CC) such as fiber-like carbon, vapor-grown carbon fiber, carbon nanotubes, particle-like carbon, Super P, and Ketjen black is compared. The morphological properties is investigated using scanning electron microscope to reveal the interaction between the different CC and the active material. The surface and interfacial cutting analysis system is also used to measure the adhesion strength between the aluminum current collector and the composite film, and the adhesion strength between the active material and the CC of the electrodes. The results obtained from the measured adhesion strength points to the fact that the structure and the particle size of CC additives have tremendous influence on the binding property of the composite electrodes, and this in turn affects the electrochemical property of the configured electrodes.

Keywords

References

  1. I. Doberdo, N. Loffler, N. Laszczynski, D. Cericola, N. Penazzi, S. Bodoardo, G.-T. Kim, S. Passerini, J. Power Sources, 2014, 248, 1000-1006. https://doi.org/10.1016/j.jpowsour.2013.10.039
  2. M.-H. Ryou, J. Kim, I. Lee, S. Kim, Y.K. Jeong, S. Hong, J.H. Ryu, T.-S. Kim, J.-K. Park, H. Lee, J.W. Choi, Adv. Mater, 2012, 25(11), 1571-1576. https://doi.org/10.1002/adma.201203981
  3. J. Chong, S. Xun, H. Zheng, X. Song, G. Liu, P. Ridgway, J.Q. Wang, V.S. Battaglia, J. Power Sources, 2011, 196(18), 7707-7714. https://doi.org/10.1016/j.jpowsour.2011.04.043
  4. S.-L. Chou, J.-Z. Wang, H.-K. Liu, S.-X. Dou, J. Phys. Chem. C, 2011, 115(32), 16220-16227. https://doi.org/10.1021/jp2039256
  5. Z.-J. Han, N. Yabuuchi, S. Hashimoto, T. Sasaki, S. Komaba, ECS Electrochem. Lett., 2013, 2(2), A17-A20. https://doi.org/10.1149/2.005302eel
  6. B. Tran, I.O. Oladeji, Z. Wang, J. Calderon, G. Chai, D. Atherton, L. Zhai, J. Electrochem. Soc., 2012, 159(12), A1928-A1933. https://doi.org/10.1149/2.035212jes
  7. G. Liu, H. Zheng, X. Song, V.S. Battaglia, J. Electrochem. Soc., 2012, 159(3), A214-A221. https://doi.org/10.1149/2.024203jes
  8. S. Ahn, Y. Kim, K.J. Kim, T.H. Kim, H. Lee, M.H. Kim, J. Power Sources, 1999, 81-82, 896-901. https://doi.org/10.1016/S0378-7753(99)00133-0
  9. X. Shen, C. Wang, J. Dong, US20040121236 A1, 2004.
  10. W. Guoping, Z. Qingtang, Y. Zuolong, Q. MeiZheng, Solid State Ionics, 2008, 179(7-8), 263-268. https://doi.org/10.1016/j.ssi.2008.01.015
  11. J. Kim, B. Kim, J.-G. Lee, J. Cho, B. Park, J. Power Sources, 2005, 139(1-2), 289-294. https://doi.org/10.1016/j.jpowsour.2004.07.008
  12. M. Hibino, H. Kawaoka, H. Zhou, I. Honma, J. Power Sources, 2003, 124(1), 143-147. https://doi.org/10.1016/S0378-7753(03)00596-2
  13. A. Sakuda, N. Nakamoto, H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago, J. Mater. Chem., 2012, 22, 15247-15254. https://doi.org/10.1039/c2jm32490c
  14. Hyperion Catalysis International, Nanotube Technology, http://hyperioncatalysis.com/technology2.htm (Accessed on: Jan 4, 2018).
  15. C. Lampe-Onnerud, J. Shi, P. Onnerud, R. Chamberlain, B. Barnett, J. Power Sources, 2001, 97-98, 133-136. https://doi.org/10.1016/S0378-7753(01)00681-4
  16. S.K. Vanimisetti, N. Ramakrishnan, Proc. Inst. Mech. Eng. C, 2012, 226(9), 2192-2213. https://doi.org/10.1177/0954406211432668
  17. K.Y. Song, G.S. Jang, J. Tao, J.H. Lee, S.K. Joo, J. Electrochem. Soc., 2016, 163(14), A2981-A2987. https://doi.org/10.1149/2.0581614jes
  18. H. Li, H. Zhou, Chem. Commun., 2012, 48, 1201-1217. https://doi.org/10.1039/C1CC14764A
  19. S. Nakanashi, T. Suzuki, Q. Cui, J. Akikusa, K. Nakamura, Trans. Nonferrous Met. Soc. China, 2014, 24, 2314-2319. https://doi.org/10.1016/S1003-6326(14)63350-1
  20. Y.K. Jeong, T.-W. Kwon, I. Lee, T.-S. Kim, A. Coskun, J.W. Choi, Energy Environ. Sci. 2015, 8, 1224-1230. https://doi.org/10.1039/C5EE00239G
  21. Y.K. Jeong, T.-W. Kwon, I. Lee, T.-S. Kim, A. Coskun, J.W. Choi, Nano Lett., 2014, 14(2), 864-870. https://doi.org/10.1021/nl404237j
  22. W. Haselrieder, B. Westphal, H. Bockholt, A. Diener, S. Hoft, A. Kwade, Int. J. Adhes. Adhes., 2015, 60, 1-8. https://doi.org/10.1016/j.ijadhadh.2015.03.002
  23. Bongki, Son, M.-H. Ryou, J. Choi, T. Lee, H.K. Yu, J.H. Kim, Y.M. Lee, ACS Appl. Mater. Interfaces, 2014, 6(1), 526-531. https://doi.org/10.1021/am404580f
  24. J. Choi, K. Kim, J. Jeong, K.Y. Cho, M.-H. Ryou, Y.M. Lee, ACS Appl. Mater. Interfaces, 2015, 7(27), 14851-14858. https://doi.org/10.1021/acsami.5b03364
  25. K. Kim, S. Byun, I. Cho, M.-H. Ryou, Y.M. Lee, ACS Appl. Mater. Interfaces, 2016, 8(36), 23688-23695. https://doi.org/10.1021/acsami.6b06344
  26. C.A. Frysz, X. Shui, D.D.L. Chung, J. Power Sources, 1996, 58(1), 41-54. https://doi.org/10.1016/0378-7753(95)02291-0
  27. M. Wong, M. Paramsothy, X.J. Xu, Y. Ren, S. Li, K. Liao, Polym., 2003, 44(25), 7757-7764. https://doi.org/10.1016/j.polymer.2003.10.011
  28. S.-Y. Fu, X.-Q. Feng, B. Lauke, Y.-W. Mai, Composites Part B, 2008, 39(6), 933-961. https://doi.org/10.1016/j.compositesb.2008.01.002
  29. J. Xu, F. Lin, M.M. Doeff, W. Tong, J. Mater. Chem. A, 2017, 5, 874-901. https://doi.org/10.1039/C6TA07991A
  30. M. Ma, N.A. Chernova, B.H. Toby, P.Y. Zavalij, M.S. Whittingham, J. Power Sources, 2007, 165(2), 517-534. https://doi.org/10.1016/j.jpowsour.2006.10.022