DOI QR코드

DOI QR Code

Analysis of Quinolone Resistance Determinants in Escherichia coli Isolated from Clinical Specimens and Livestock Feces

임상검체와 가축으로부터 분리된 대장균을 대상으로 Quinolone계 항균제 내성인자 분석

  • Sung, Ji Youn (Department of Biomedical Laboratory Science, Far East University)
  • 성지연 (극동대학교 임상병리학과)
  • Received : 2018.09.28
  • Accepted : 2018.10.24
  • Published : 2018.12.31

Abstract

The inappropriate and widespread use of quinolones in humans and animals may cause accelerated emergence and spread of antimicrobial-resistant determinants. In this study, we investigated quinolone resistance mechanisms in a total of 65 nalidixic acid-resistant E. coli isolated from swine rectal swabs (N=40) and clinical specimens (N=25). Antimicrobial susceptibilities were determined by the disk diffusion method. PCR and DNA sequencing were performed for investigations of genes and mutations associated with quinolone resistance. In our study, 62 of 65 nalidixic acid-resistant E. coli harbored mutations in gyrA, parC, and/or parE genes; of the 65 isolates, 62 (95.4%) had mutations in the gyrA gene, 35 (53.8%) had mutations in the parC gene, 7 (10.8%) had mutations in the parE gene. The 35 isolates harbored mutations in two genes, gyrA and parC. Plasmid-mediated quinolone resistance (PMQR) determinants were investigated in the 65 isolates. Thirteen of 65 nalidixic acid-resistant E. coli contained the qnrS gene and 10 of those isolates had mutations in the gyrA, parC, and/or parE genes. We confirmed that an important mechanism of quinolone resistance in E. coli isolated from human and swine involves chromosomal mutations in the gyrA, parC, and/or parE genes with increasing use of quinolone for treatment or additives.

퀴놀론 항균제가 사람과 동물에게 부적절하고 광범위하게 사용될 경우 항균제내성인자의 출현 및 확산이 가속화 될 수 있다. 본 연구에서는 돼지의 직장면봉 검체(N=40) 및 임상 검체로(N=25)부터 분리된 총 65균주의 nalidixic acid 내성 대장균을 대상으로 quinolone 내성 기전을 조사하였다. 항균제 감수성은 디스크 확산법에 의해 결정되었다. Quinolone 내성과 관련된 유전자와 돌연변이를 조사하기 위해 PCR 및 DNA sequencing이 수행되었다. 총 65균주의 nalidixic acid 내성 대장균 중 62균주가 gyrA, parC, parE 유전자에 돌연변이를 포함하고 있었는데, gyrA 유전자에 돌연변이를 포함하고 있는 균주는 62균주(95.4%)였고, 35균주(53.8%)가 parC 유전자에 돌연변이를 갖고 있었으며, 7균주(10.8%)가 parE 유전자에 돌연변이를 포함하고 있었다. 35균주는 gyrA 와 parC 유전자에 모두 돌연변이를 가지고 있는 것으로 나타났다. 총 65균주의 대장균을 대상으로 plasmid-mediated quinolone resistance (PMQR) determinants를 조사하였다. 65균주의 nalidixic acid 내성 대장균 중 13균주에서 qnrS 유전자가 검출되었으나 이 중 10균주는 gyrA, parC, parE 유전자에 돌연변이를 포함하고 있는 것을 나타났다. 본 연구에서는 사람과 돼지로부터 분리된 대장균이 quinolone 계열 항균제에 내성을 나타내는데 중요한 역할을 하는 기전이 gyrA, parC, parE 유전자에 염색체 돌연변이가 발생하는 경우임을 확인하였는데 이 돌연변이들은 치료목적 또는 동물의 성장촉진을 위한 항균제의 과다사용으로 유발될 수 있다.

Keywords

References

  1. Hooper DC. Mechanisms of action and resistance of older and newer fluoroquinolones. Clin Infect Dis. 2000;31:S24-S28. https://doi.org/10.1086/314056
  2. EMA. Sales of veterinary antimicrobial agents in 19 EU/EEA countries in 2010. Second ESVAC report. London; European medicines agency; 2012.
  3. van den Bogaard AE, Stobberingh EE. Antibiotic usage in animals: impact on bacterial resistance and public health. Drugs. 1999;58:589-607. https://doi.org/10.2165/00003495-199958040-00002
  4. Chae SM, Park EJ, Park S. Antibiotic consumption and expenditures for acute upper respiratory tract infections in outpatients. Yakhak Hoeji. 2013;57:199-204. https://doi.org/10.2807/1560-7917.ES.2016.21.26.30266.
  5. Paltansing S, Kraakman ME, Ras JM, Wessels E, Bernards AT. Characterization of fluoroquinolone and cephalosporin resistance mechanisms in Enterobacteriaceae isolated in a Dutch teaching hospital reveals the presence of an Escherichia coli ST131 clone with a specific mutation in parE. J Antimicrob Chemother. 2013;68:40-45. https://doi.org/10.1093/jac/dks365.
  6. Hooper DC, Jacoby GA. Topoisomerase inhibitors: fluoroquinolone mechanisms of action and resistance. Cold Spring Harb Perspect Med. 2016;6:a025320. https://doi.org/10.1101/cshperspect.a025320.
  7. Cattoir V, Poirel L, Rotimi V, Soussy CJ, Nordmann P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother. 2007;60: 394-397. https://doi.org/10.1093/jac/dkm204
  8. Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC. Prevalence in the United States of aac(6')-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother. 2006;50(11):3953-3955. https://doi.org/10.1128/AAC.00915-06
  9. Majlesi A, Kakhki RK, Mozaffari Nejad AS, Mashouf RY, Roointan A, Abazari M, et al. Detection of plasmid-mediated quinolone resistance in clinical isolates of Enterobacteriaceae strains in Hamadan, West of Iran. Saudi J Biol Sci. 2018;25:426-430. https://doi.org/10.1016/j.sjbs.2016.11.019.
  10. Doi Y, Park YS, Rivera JI, Adams-Haduch JM, Hingwe A, Sordillo EM, et al. Community-associated extended-spectrum $bla_{IMP-10}$-lactamase-producing Escherichia coli infection in the United States. Clin Infect Dis. 2013;56:641-648. https://doi.org/10.1093/cid/cis942.
  11. CLSI. Performance standards for antimicrobial susceptibility testing; sixteenth informational supplement. CLSI document M100-S20. Wayne, Pennsylvania: Clinical and Laboratory Standards Institute; 2010. p52-53.
  12. Aoike N, Saga T, Sakata R, Yoshizumi A, Kimura S, Iwata M, et al. Molecular characterization of extraintestinal Escherichia coli isolates in Japan: relationship between sequence types and mutation patterns of quinolone resistance-determining regions analyzed by pyrosequencing. J Clin Microbiol. 2013;51:1692-1698. https://doi.org/10.1128/JCM.03049-12.
  13. Xia LN, Li L, Wu CM, Liu YQ, Tao XQ, Dai L, et al. A survey of plasmid-mediated fluoroquinolone resistance genes from Escherichia coli isolates and their dissemination in Shandong, China. Foodborne Pathog Dis. 2010;7:207-215. https://doi.org/10.1089/fpd.2009.0378.
  14. Kim HB, Wang M, Park CH, Kim EC, Jacoby GA, Hooper DC. oqxAB encoding a multidrug efflux pump in human clinical isolates of 13 Enterobacteriaceae. Antimicrob Agents Chemother. 2009;53:3582-3584. https://doi.org/10.1128/AAC.01574-08.
  15. Zhao L, Zhang J, Zheng B, Wei Z, Shen P, Li S, et al. Molecular epidemiology and genetic diversity of fluoroquinolone-resistant Escherichia coli isolates from patients with community-onset infections in 30 Chinese county hospitals. J Clin Microbiol. 2015;53:766-770. https://doi.org/10.1128/JCM.02594-14.
  16. Hu YS, Shin S, Park YH, Park KT. Prevalence and mechanism of fluoroquinolone resistance in Escherichia coli isolated from swine feces in Korea. J Food Prot. 2017;80:1145-1151. https://doi.org/10.4315/0362-028X.JFP-16-502.
  17. Paltansing S, Kraakman ME, Ras JM, Wessels E, Bernards AT. Characterization of fluoroquinolone and cephalosporin resistance mechanisms in Enterobacteriaceae isolated in a Dutch teaching hospital reveals the presence of an Escherichia coli ST131 clone with a specific mutation in parE. J Antimicrob Chemother. 2013;68:40-45. https://doi.org/10.1093/jac/dks365.
  18. Yeh JC, Lo DY, Chang SK, Chou CC, Kuo HC. Prevalence of plasmid-mediated quinolone resistance in Escherichia coli isolated from diseased animals in Taiwan. J Vet Med Sci. 2017;79:730-735. https://doi.org/10.1292/jvms.16-0463.
  19. Park JM, Choi SS. Molecular characterization of quinolone antibiotic resistance in Escherichia coli isolated from retail meat in Seoul. Yakhak Hoeji. 2016;60:1-7. https://doi.org/10.1186/s13620-017-0095-8.
  20. Sung JY. The prevalence of plasmid-mediated quinolone resistance genes among CTX-M-14 producing Escherichia coli strains isolated from a university hospital in the Chungcheong province. Korean J Clin Lab Sci. 2016;48:210-216. https://doi.org/10.15324/kjcls.2016.48.3.210.
  21. Yang HY, Nam YS, Lee HJ. Prevalence of plasmid-mediated quinolone resistance genes among ciprofloxacin-nonsusceptible Escherichia coli and Klebsiella pneumoniae isolated from blood cultures in Korea. Can J Infect Dis Med Microbiol. 2014;25:163-169. https://doi.org/10.1155/2014/329541

Cited by

  1. Comparison of Fluoroquinolone Resistance Determinants in Uropathogenic Escherichia coli between 2 Time Periods of 1989 and 2010-2014 at Gangwon Province in Korea vol.26, pp.2, 2020, https://doi.org/10.15616/bsl.2020.26.2.120