DOI QR코드

DOI QR Code

Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis

  • Alijani, Meysam (Department of Civil Engineering, Khomein Branch, Islamic Azad University) ;
  • Bidgoli, Mahmood Rabani (Department of Civil Engineering, Jasb Branch, Islamic Azad University)
  • Received : 2018.09.14
  • Accepted : 2018.10.26
  • Published : 2018.12.25

Abstract

In this study, vibration analysis of a concrete foundation-reinforced by $SiO_2$ nanoparticles resting on soil bed is investigated. The soil medium is simulated with spring constants. Furthermore, the Mori-Tanaka low is used for obtaining the material properties of nano-composite structure and considering agglomeration effects. Using third order shear deformation theory or Reddy theory, the total potential energy of system is calculated and by means of the Hamilton's principle, the coupled motion equations are obtained. Also, based an analytical method, the frequency of system is calculated. The effects of volume percent and agglomeration of $SiO_2$ nanoparticles, soil medium and geometrical parameters of structure are shown on the frequency of system. Results show that with increasing the volume percent of $SiO_2$ nanoparticles, the frequency of structure is increased.

Keywords

References

  1. Arbabi A, Kolahchi R, and Rabani Bidgoli M. (2017). "Concrete columns reinforced with Zinc Oxide nanoparticles subjected to electric field: buckling analysis." Wind and Structures, An International Journal, Techno Press, 24, 5, 431-446. https://doi.org/10.12989/was.2017.24.5.431
  2. Bowles, J. E. (1988). "Foundation analysis and design." Mc Graw Hill Inc.
  3. Chen, X. L., Liu, G. R., and Lim, S. P. (2003). "An element free Galerkin method for the free vibration analysis of composite laminates of complicated shape." Composite Structures, Elsevier, 59, 2, 279-289. https://doi.org/10.1016/S0263-8223(02)00034-X
  4. Dai, K. Y., Liu, G. R., Lim, K. M., and Chen X. L. (2004). "A mesh-free method for static and free vibration analysis of shear deformable laminated composite plates." Journal of Sound and Vibration, Elsevier, 269, 3-5, 633-652.
  5. Ehsani, A., Nili, M., and Shaabani K. (2017). "Effect of Nanosilica on the compressive strength development and water absorption properties of cement paste and concrete containing fly ash." KSCE Journal of Civil Engineering, Springer.
  6. Fathi, M., Yousefipour, A., and Hematpoury Farokhy, E. (2017). "Mechanical and physical properties of expanded polystyrene structural concretes containing Micro-silica and Nano-silica." Construction and Building Materials, 136, 590-597. https://doi.org/10.1016/j.conbuildmat.2017.01.040
  7. Ferreira, A. J. M., Roque C. M. C., Neves A. M. A., Jorge, R. M. N., and Soares, C. M. M. (2010). "Analysis of plates on Pasternak foundations by radial basis functions." Computational Mechanics, Springer, 46, 6, 791-803. https://doi.org/10.1007/s00466-010-0518-9
  8. Jafarian Arani, A., and Kolahchi, R. (2016). "Buckling Analysis of embedded concrete columns armed with carbon nanotubes." Computers and Concrete, An international Journal, Techno Press, 17, 5, 567-578. https://doi.org/10.12989/cac.2016.17.5.567
  9. Jo B. W., Kim C. H., and Lim J. H. (2007). "Investigations on the development of powder concrete with Nano-SiO2 particles." KSCE Journal of Civil Engineering, Springer, 11, 1, 37-42. https://doi.org/10.1007/BF02823370
  10. Kammoun, Z. and Trabelsi, A. (2018), "Mechanical characteristics of a classical concrete lightened by the addition of treated straws", Advanc. Concrete Construct., 6, 375-386.
  11. Kumar, Y., and Lal, R. (2012). "Vibrations of nonhomogeneous orthotropic rectangular plates with bilinear thickness variation resting on Winkler foundation." Meccanica, Springer, 47, 4, 893-915. https://doi.org/10.1007/s11012-011-9459-4
  12. Lam, K. Y., Wang C. M., and He X. Q. (2000). "Canonical exact solutions for levy-plates on two-parameter foundation using green's functions." Engineering Structures, Elsevier, 22, 4, 364-378. https://doi.org/10.1016/S0141-0296(98)00116-3
  13. Mantari, J. L., and Granados, E. V. (2016). "An original FSDT to study advanced composites on elastic foundation." Thin Walled Structures, Elsevier, 107, 80-89. https://doi.org/10.1016/j.tws.2016.05.024
  14. Mori, T., and Tanaka, K. (1973). "Average stress in matrix and average elastic energy of materials with misfitting inclusions." Acta Metallurgica et Materialia, Elsevier, 21, 5, 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
  15. Nguyen-Thoi, T., Bui-Xuan, T., Phung-Van, P., Nguyen-Hoang, S., and Nguyen-Xuan, H. (2014). "An Edgebased smoothed three-node Mindlin plate element (ES-MIN3) for static and free vibration analyses of plates." KSCE Journal of Civil Engineering, Springer, 18, 4, pp.1072-1082. https://doi.org/10.1007/s12205-014-0002-8
  16. Park, M., and Choi, D- H. (2017). "A simplified first-order shear deformation theory for bending, buckling and free vibration analyses of isotropic plates on elastic foundations." KSCE Journal of Civil Engineering, Springer.
  17. Reddy, J. N., (2002). "Mechanics of laminated composite plates and shells: theory and analysis." second edition, CRC Press.
  18. Secgin, A, and Sarigul, A. S. (2008). "Free vibration analysis of symmetrically laminated thin composite plates by using discrete singular convolution (DSC) approach: algorithm and verification." Journal of Sound and Vibration, Elsevier, 315, No.1-2, 197-211. https://doi.org/10.1016/j.jsv.2008.01.061
  19. Shen, H. S., Yang, J., and Zhang, L. (2001). "Free and forced vibration of Reissner-Mindlin plates with free edges resting on elastic foundations." Journal of sound and vibration, Elsevier, 244, 2, 299-320. https://doi.org/10.1006/jsvi.2000.3501
  20. Shi, D. L., Feng, X. Q., Huang Y. Y., Hwang K. C., and Gao, H. (2004). "The Effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites." Journal of Engineering Materials and Technology - ASME, 126, 3, 250-270. https://doi.org/10.1115/1.1751182
  21. Thai, H- T., and Choi, D- H. (2014). "Levy Solution for free vibration analysis of functionally graded plates based on a refined plate theory." KSCE Journal of Civil Engineering, Springer, 18, 6, pp.1813-1824. https://doi.org/10.1007/s12205-014-0409-2
  22. Thai, H- T., Park, M., and Choi, D- H. (2013). "A simple refined theory for bending, buckling, and vibration of thick plates resting on elastic foundation." International Journal of Mechanical Sciences, Elsevier, 73, 40-52. https://doi.org/10.1016/j.ijmecsci.2013.03.017
  23. Ugurlu B. (2016). "Boundary element method based vibration analysis of elastic bottom plates of fluid storage tanks resting on Pasternak foundation." Engineering Analysis with Boundary Elements 62, 163-176. https://doi.org/10.1016/j.enganabound.2015.10.006
  24. Whitney, J. M. (1987). "Structural analysis of laminated anisotropic plates." Technomic Publishing Company Inc., Lancaster, Pennsylvania, U.S.A..
  25. Zamani, M., Fallah, A., and Aghdam, M. M. (2012). "Free vibration analysis of moderately thick trapezoidal symmetrically laminated plates with various combinations of boundary conditions." European Journal of Mechanics A/Solids, Springer, 36, 204-212. https://doi.org/10.1016/j.euromechsol.2012.03.004
  26. Zamanian M, Kolahchi R, and Rabani Bidgoli M. (2017). "Agglomeration effects on the buckling behavior of embedded concrete columns reinforced with SiO2 nanoparticles." Wind and Structures, An International Journal, Techno Press, 24, 1, 43-57. https://doi.org/10.12989/was.2017.24.1.043
  27. Zhang, W., Li, H. and Zhang, Y. (2018), "Effect of porosity on frost resistance of Portland cement pervious concrete", Advanc. Concrete Construct., 6, 363-373.
  28. Zhong, Y., and Yin, J. H. (2008). "Free vibration analysis of a plate on foundation with completely free boundary by finite integral transform method." Mechanics Research Communications, Elsevier, 35, 4, 268-275. https://doi.org/10.1016/j.mechrescom.2008.01.004
  29. Zhou, D., Cheung, Y. K., Lo, S. H., and Au, F. T. K. (2004). "Three-dimensional vibration analysis of rectangular thick plates on Pasternak foundation." International Journal for Numerical Methods in Engineering, Wiley Online library, 59, 1313-1334. https://doi.org/10.1002/nme.915

Cited by

  1. Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection vol.9, pp.4, 2018, https://doi.org/10.12989/acc.2020.9.4.397
  2. Application of Kelvin's theory for structural assessment of FG rotating cylindrical shell: Vibration control vol.10, pp.6, 2018, https://doi.org/10.12989/acc.2020.10.6.499
  3. Confinement effectiveness of Timoshenko and Euler Bernoulli theories on buckling of microfilaments vol.11, pp.1, 2021, https://doi.org/10.12989/acc.2021.11.1.081
  4. Mechanics of anisotropic cardiac muscles embedded in viscoelastic medium vol.12, pp.1, 2018, https://doi.org/10.12989/acc.2021.12.1.057
  5. An innovative system for novel vibration of rotating FG shell with combination of fraction laws vol.12, pp.2, 2018, https://doi.org/10.12989/acc.2021.12.2.157