DOI QR코드

DOI QR Code

Model-free Deadbeat Predictive Current Control of a Surface-mounted Permanent Magnet Synchronous Motor Drive System

  • Zhou, Yanan (Department of Electrical Engineering and Automation, Hefei University of Technology) ;
  • Li, Hongmei (Department of Electrical Engineering and Automation, Hefei University of Technology) ;
  • Zhang, Hengguo (Department of Electrical Engineering and Automation, Hefei University of Technology)
  • Received : 2017.06.08
  • Accepted : 2017.09.24
  • Published : 2018.01.20

Abstract

Parametric uncertainties and inverter nonlinearity exist in the permanent magnet synchronous motor (PMSM) drive system of electrical vehicles, which may lead to performance degradation or failure, and eventually threaten reliable operation. Therefore, a model-free deadbeat predictive current controller (MFDPCC) for PMSM drive systems is proposed in this study. The data-driven ultra-local model of a surface-mounted PMSM (SMPMSM) drive system that consists of parametric uncertainties and inverter nonlinearity is first established through the input and output data of a SMPMSM drive system. Subsequently, MFDPCC is designed. The performance comparisons and analyses of the proposed MFDPCC, the conventional proportional-integral controller, and the model-based deadbeat predictive current controller for SMPMSM drive systems are implemented via system simulation and experimental tests. Results show the effectiveness and technical advantages of the proposed MFDPCC.

Keywords

References

  1. B. Stumberger, G. Stumberger, D. Dolinar, A. Hamler, and M. Trlep, “Evaluation of saturation and crossmagnetization effects in interior permanent-magnet synchronous motor,” IEEE Trans. Ind. Appl., Vol. 39, No. 5, pp. 1264-1271, Sep./Oct 2003. https://doi.org/10.1109/TIA.2003.816538
  2. R. Ramakrishnan, R. Islam, M. Islam, and T. Sebastian, "Real time estimation of parameters for controlling and monitoring permanent magnet synchronous motors," in IEEE International Electric Machines & Drives Conference, pp. 1188-1193, 2009.
  3. P. Cortes, M. P. Kazmierkowski, R. M. Kennel, D. E. Quevedo, and J. Rodriguez, “Predictive control in power electronics and drives,” IEEE Trans. Ind. Electron., Vol. 55, No. 12, pp. 4312-4324, Dec. 2008. https://doi.org/10.1109/TIE.2008.2007480
  4. F. X. Wang, S. H. Li, X. Z. Mei, W. Xie, J. Rodriguez, and R. M. Kennel, “Model-based predictive direct control strategies for electrical drives: an experimental evaluation of PTC and PCC methods,” IEEE Trans. Ind. Informat., Vol. 11, No. 3, pp. 671-681, Jun 2015. https://doi.org/10.1109/TII.2015.2423154
  5. F. Morel, X. Lin-Shi, J. M. Retif, B. Allard, and C. Buttay, “A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive,” IEEE Trans. Ind. Electron., Vol. 56, No. 7, pp. 2715-2728, Jul 2009. https://doi.org/10.1109/TIE.2009.2018429
  6. P. Wipasuramonton, Z. Q. Zhu, and D. Howe, “Predictive current control with current-error correction for PM brushless AC drives,” IEEE Trans. Ind. Appl., Vol. 42, No. 4, pp. 1071-1079, Jul./Aug. 2006. https://doi.org/10.1109/TIA.2006.876085
  7. J. Castello Moreno, J. M. Espi Huerta, R. Garcia Gil, and S. A. Gonzalez, “A robust predictive current control for three-phase grid-connected inverters,” IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 1993-2004, Jun. 2009. https://doi.org/10.1109/TIE.2009.2016513
  8. L.-H. Hoang, K. Slimani, and P. Viarouge, “Analysis and implementation of a real-time predictive current controller for permanent-magnet synchronous servo drives,” IEEE Trans. Ind. Electron., Vol. 41, No. 1, pp. 110-117, Feb. 1994. https://doi.org/10.1109/41.281616
  9. G. H. Bode, P. C. Loh, M. J. Newman, and D. G. Holmes, “An improved robust predictive current regulation algorithm,” IEEE Trans. Ind. Appl., Vol. 41, No. 6, pp. 1720-1733, Nov./Dec. 2005. https://doi.org/10.1109/TIA.2005.858324
  10. W. Hongjia, X. Dianguo, and Y. Ming, "Improved deadbeat predictive current control strategy of permanent magnet motor drives," Transactions of China Electrotechnical Societ, Vol. 6, pp. 39-45, 2011.
  11. N. Li, Y. Ming, L. Keshu, and X. Dianguo, "A predictive current control scheme for permanent magnet synchronous motors," Proceedings of the CSEE, Vol. 6, pp. 131-137, 2012.
  12. S. J. Jeong and S. H. Song, “Improvement of predictive current control performance using online parameter estimation in phase controlled rectifier,” IEEE Trans. Power Electron., Vol. 22, No. 5, pp. 1820-1825, Sep. 2007. https://doi.org/10.1109/TPEL.2007.904235
  13. Y. A. R. I. Mohamed and E. F. El-Saadany, “An improved deadbeat current control scheme with a novel adaptive self-tuning load model for a three-phase PWM voltagesource inverter,” IEEE Trans. Ind. Electron., Vol. 54, No. 2, pp. 747-759, Apr 2007. https://doi.org/10.1109/TIE.2007.891767
  14. G. Gatto, I. Marongiu, and A. Serpi, “Discrete-time parameter identification of a surface-mounted permanent magnet synchronous machine,” IEEE Trans. Ind. Electron., Vol. 60, No. 11, pp. 4869-4880, Nov. 2013. https://doi.org/10.1109/TIE.2012.2221113
  15. Y. A. R. I. Mohamed and F. El-Saadany, "Robust high bandwidth discrete-time predictive current control with predictive internal model - A unified approach for voltage-source PWM converters," IEEE Trans. Power Electron., Vol. 23, No. 1, pp. 126-136, Jan. 2008. https://doi.org/10.1109/TPEL.2007.911797
  16. K. H. Kim, “Model reference adaptive control-based adaptive current control scheme of a PM synchronous motor with an improved servo performance,” IET Electric Power Appl., Vol. 3, No. 1, pp. 8-18, Jan. 2009. https://doi.org/10.1049/iet-epa:20080030
  17. S. H. Chang, P. Y. Chen, Y. H. Ting, and S. W. Hung, “Robust current control-based sliding mode control with simple uncertainties estimation in permanent magnet synchronous motor drive systems,” IET Electric Power Appl., Vol. 4, No. 6, pp. 441-450, Jul 2010. https://doi.org/10.1049/iet-epa.2009.0146
  18. J. Weigold and M. Braun, “Predictive current control using identification of current ripple,” IEEE Trans. Ind. Electron., Vol. 55, No. 12, pp. 4346-4353, Dec. 2008. https://doi.org/10.1109/TIE.2008.2007517
  19. C. K. Lin, T. H. Liu, J. T. Yu, L. C. Fu, and C. F. Hsiao, “Model-free predictive current control for interior permanent-magnet synchronous motor drives based on current difference detection technique,” IEEE Trans. Ind. Electron., Vol. 61, No. 2, pp. 667-681, Feb. 2014. https://doi.org/10.1109/TIE.2013.2253065
  20. Y. Chen, T. H. Liu, C. F. Hsiao, and C. K. Lin, “Implementation of adaptive inverse controller for an interior permanent magnet synchronous motor adjustable speed drive system based on predictive current control,” IET Electric Power Appl., Vol. 9, No. 1, pp. 60-70, Jan. 2015. https://doi.org/10.1049/iet-epa.2014.0035
  21. C. K. Lin, J. T. Yu, Y. S. Lai, H. C. Yu, Y. H. Lin, and F. M. Chen, “Simplified model-free predictive current control for interior permanent magnet synchronous motors,” Electronics Lett., Vol. 52, No. 1, pp. 49-50, Jan. 2016. https://doi.org/10.1049/el.2015.2372
  22. C. K. Lin, J. T. Yu, Y. S. Lai, and H. C. Yu, “Improved model-free predictive current control for synchronous reluctance motor drives,” IEEE Trans. Ind. Electron., Vol. 63, No. 6, pp. 3942-3953, Jun. 2016. https://doi.org/10.1109/TIE.2016.2527629
  23. A. Imura, T. Takahashi, M. Fujitsuna, T. Zanma, and S. Doki, “Refinement of inverter model considering deadtime for performance improvement in predictive instantaneous current control,” IEEJ Trans. Electr. Electron. Eng., Vol. 9, No. 1, pp. 83-89, Jan. 2014. https://doi.org/10.1002/tee.21939
  24. A. Imura, T. Takahashi, M. Fujitsuna, T. Zanma, and S. Doki, “Improved PMSM model considering flux characteristics for model predictive-based current control,” IEEJ Trans. Electr. Electron. Eng., Vol. 10, No. 1, pp. 92-100, Jan. 2015. https://doi.org/10.1002/tee.22070
  25. J. Q. Han, “From PID to active disturbance rejection control,” IEEE Trans. Ind. Electron., Vol. 56, No. 3, pp. 900-906, Mar. 2009. https://doi.org/10.1109/TIE.2008.2011621
  26. Z. S. Hou and S. T. Jin, “Data-driven model-free adaptive control for a class of MIMO nonlinear discrete-time systems,” IEEE Trans. Neural Netw., Vol. 22, No. 12, pp. 2173-2188, Dec. 2011. https://doi.org/10.1109/TNN.2011.2176141
  27. M. Fliess and C. Join, “Model-free control,” Int. J. Contr., Vol. 86, No. 12, pp. 2228-2252, Dec. 2013. https://doi.org/10.1080/00207179.2013.810345
  28. R. E. Precup, M. B. Radac, C. A. Dragos, S. Preitl, and E. M. Petriu, "Model-free tuning solution for sliding mode control of servo systems," in Annual IEEE Systems Conference, pp. 30-35, 2014.
  29. R. Madonski and P. Herman, "Model-free control of a two-dimensional system based on uncertainty reconstruction and attenuation," in International Conference on Control and Fault-Tolerant Systems, pp. 542-547, 2013.
  30. J. De Miras, C. Join, M. Fliess, S. Riachy, and S. Bonnet, "Active magnetic bearing: A new step for model-free control," in IEEE 52nd Annual Conference on Decision and Control, pp. 7449-7454, 2013.
  31. M. B. Radac, R. C. Roman, R. E. Precup, and E. M. Petriu, "Data-driven model-free control of twin rotor aerodynamic systems: Algorithms and experiments," in IEEE International Symposium on Intelligent Control, pp. 1889-1894, 2014.
  32. F. Lafont, J.-F. Balmat, N. Pessel, and M. Fliess, "A model-free control strategy for an experimental greenhouse with an application to fault accommodation," Computers and Electronics in Agriculture, Vol. 110, pp. 139-149, Jan 2015. https://doi.org/10.1016/j.compag.2014.11.008
  33. Y. Xu, E. Bideaux, and D. Thomasset, "Robustness study on the modelfree control and the control with restricted model of a high performance electro-hydraulic system," in Scandinavian International Conference on Fluid Power, 2013.
  34. D. M. Park and K. H. Kim, “Parameter-independent online compensation scheme for dead time and inverter nonlinearity in IPMSM drive through waveform analysis,” IEEE Trans.Ind. Electron., Vol. 61, No. 2, pp. 701-707, Feb 2014. https://doi.org/10.1109/TIE.2013.2251737
  35. H. J. Wang, M. Yang, L. Niu, and D. G. Xu, "Current-loop bandwidth expansion strategy for permanent magnet synchronous motor drives," Proceedings of the 5th IEEE Conference on Industrial Electronics and Applications, pp. 1340-1345, 2010.
  36. S. Lerdudomsak, S. Doki, and S. Okuma, “Voltage limiter calculation method for fast torque response of IPMSM in overmodulation range,” IEEJ Trans. Electr. Electron. Eng., Vol. 5, No. 5, pp. 586-595, Sep. 2010. https://doi.org/10.1002/tee.20576
  37. J. R. Trapero, H. Sira-Ramirez, and V. F. Batlle, “An algebraic frequency estimator for a biased and noisy sinusoidal signal,” Signal Processing, Vol. 87, No. 6, pp. 1188-1201, Jun 2007. https://doi.org/10.1016/j.sigpro.2006.10.006
  38. M. Fliess and H. Sira-Ramirez, "Closed-loop parametric identification for continuous-time linear systems via new algebraic techniques," Advances in Industrial Control, pp. 363-391, 2008.
  39. S. Morimoto, M. Sanada, and Y. Takeda, “Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator,” IEEE Trans. Ind. Appl., Vol. 30, No. 4, pp. 920-926, Jul./Aug. 1994. https://doi.org/10.1109/28.297908
  40. Y. C. Kwon, S. Kim, and S. K. Sul, “Voltage feedback current control scheme for improved transient performance of permanent magnet synchronous machine drives,” IEEE Trans. Ind. Electron., Vol. 59, No. 9, pp. 3373-3382, Sep 2012. https://doi.org/10.1109/TIE.2011.2173097
  41. M. Fliess and C. Join, "Stability margins and model-free control: A first look," in European Control Conference, pp. 454-459, 2014.