DOI QR코드

DOI QR Code

Theoretical model to determine bond loss in prestressed concrete with reinforcement corrosion

  • Ortega, Nestor F. (Engineering Institute, Engineering Department, Universidad Nacional del Sur) ;
  • Moro, Juan M. (Engineering Institute, Engineering Department, Universidad Nacional del Sur) ;
  • Meneses, Romina S. (Engineering Institute, Engineering Department, Universidad Nacional del Sur)
  • Received : 2017.02.22
  • Accepted : 2017.11.30
  • Published : 2018.01.10

Abstract

This paper reviews the mechanical effects produced by reinforcement corrosion of prestressed concrete beams. Specifically, modifications in the bonding of the tendon to the concrete that reduce service life and load bearing capacity are studied. Experimental information gathered from previous works has been used for the theoretical analysis. Relationships between bond stress loss and reinforcement penetration in the concrete, and concrete external cracking were established. Also, it was analysed the influence that has the location of the area affected by corrosion on the loss magnitude of the initial prestress.

Keywords

References

  1. Aimin, X. and Shayan A. (2016), "Relationship between reinforcing bar corrosion and concrete cracking", ACI Mater. J., 113(1), 3-12.
  2. Aveldano, R.R. and Ortega, N.F. (2013), "Behavior of concrete elements subjected to corrosion in their compressed or tensed reinforcement", Constr. Build. Mater., 38, 822-828. https://doi.org/10.1016/j.conbuildmat.2012.09.039
  3. Bhargava, K., Ghosh, A.K., Mori, Y. and Ramanujam, S. (2006), "Model for cover cracking due to rebar corrosion in RC structures", Eng. Struct., 28(8), 1093-1109. https://doi.org/10.1016/j.engstruct.2005.11.014
  4. Cabrera, O.A., Ortega, N.F., Schierloh, M.I. and Traversa, L.P. (2012), "Influencia del curado sobre la evolucion de la corrosion en vigas de hormigon armado con diferentes agregados finos", Revista de la Asociacion Latinoamericana de Control de Calidad, Patologia y Recuperacion de la Construccion, 2(2), 74-85.
  5. Calavera Ruiz, J. (2008), Proyecto y calculo de estructuras de hormigon, Vol. 1, Second edition, Intemac Ediciones, Madrid.
  6. Castaldo, P., Palazzo, B. and Mariniello, A. (2017), "Effects of the axial force eccentricity on the time-variant structural reliability of ageing rc cross-sections subjected to chloride-induced corrosion", Eng. Struct., 130, 261-274. https://doi.org/10.1016/j.engstruct.2016.10.053
  7. Chung, L., Cho, S.H., Kim, J.H.J. and Yi, S.T. (2004), "Correction factor suggestion for ACI development length provisions based on flexural testing of RC slabs with various levels of corroded reinforcing bars", Eng. Struct., 26(8), 1013-1026. https://doi.org/10.1016/j.engstruct.2004.01.008
  8. Comision Permanente del Hormigon (1998), Instruccion de Hormigon Estructural (EHE), Ministerio de Fomento.
  9. Comite Europeo de Normalizacion (1993), Eurocodigo 2: Proyecto de estructuras de hormigon, AENOR, Madrid, parte 1-1, 94-96, (1994), y parte 1-3, 24-26.
  10. Euro-International Committee of Concrete-International Federation of Prestressed, Code Model CEB-FIP 1990 for structural concrete (1995), Engineers College of Roads, Channels and Ports, Spanish Edition, Concrete Spanish Group-CEB and Prestressed Spanish Technical Association.
  11. Gerengi, H., Kocak, Y., Jazdzewska, A. and Kurtay, M. (2017), "Corrosion behavior of concrete produced with diatomite and zeolite exposed to chlorides", Comput. Concrete, 19(2), 161-169. https://doi.org/10.12989/cac.2017.19.2.161
  12. Hosseini, S.A., Shabakhty, N. and Mahini, S.S. (2015), "Correlation between chloride-induced corrosion initiation and time to cover cracking in RC Structures", Struct. Eng. Mech., 56(2), 257-273. https://doi.org/10.12989/sem.2015.56.2.257
  13. Jin, L., Zhang, R., Du, X. and Li, Y. (2015), "Investigation on the cracking behavior of concrete cover induced by corner located rebar corrosion", Eng. Fail. Anal., 52, 129-143, https://doi.org/10.1016/j.engfailanal.2015.03.019
  14. Laboratoire Central des Points et Chaussees (1999), Determination of the conventional length of anchorage for bond, LCPC, 45-56.
  15. Leonhart, F. (1988), Estructuras de hormigon armado, Tomo V: Hormigonpretensado, ($2^{\circ}$ edicion en espanol) Ed. Ateneo, Buenos Aires.
  16. Liu, M., Cheng, X., Li, X., Hu, J., Pan, Y. and Jin, Z. (2016), "Indoor accelerated corrosion test and marine field test of corrosion-resistant low-alloy steel rebars", Case Stud. Constr. Mater., 5, 87-99. https://doi.org/10.1016/j.cscm.2016.09.005
  17. Lollini, F., Redaelli, E. and Bertolini, L. (2016), "Corrosion assessment of reinforced concrete elements of Torre Velasca in Milan", Case Stud. Constr. Mater., 4, 55-61. https://doi.org/10.1016/j.cscm.2015.12.005
  18. Meneses, R.S., Moro, J.M., Aveldano, R.R. and Ortega, N.F. (2016), "Influencia del espesor del recubrimiento de elementos de hormigon armado expuestos a procesos de corrosion y sometidos a cargas externas", Revista de la Asociacion Latinoamericana de Control de Calidad, Patologia y Recuperacion de la Construccion, 6(2), 46-61.
  19. Ortega, N.F., Alonso, M.C., Andrade, M.C. and Lopez, C.; "Analisis de la Fisuracion Ocasionada por la Corrosion de las Armaduras Activas de Elementos Pretensados", Coloquia 2001, Madrid, 10.
  20. Ortega, N.F., Lopez, C., Alonso, M.C. and Andrade, M.C.; "Mecanica estructural de elementos de hormigon, con armaduras activas adherentes sometidas a la corrosion", $14^{\circ}$ Reunion de la Asociacion Argentina de Tecnologia del Hormigon, Olavarria, Argentina, 7.
  21. Ortega, N.F., Rivas, E.I., Aveldano, R.R. and Peralta, M.H. (2011), "Beams affected by corrosion. influence of reinforcement placement in the cracking", Struct. Eng. Mech., 37(2), 72-81.
  22. Sajedi, S. and Huang, Q. (2015), "Probabilistic prediction model for average bond strength at steel-concrete interface considering corrosion effect", Eng. Struct., 99, 120-131. https://doi.org/10.1016/j.engstruct.2015.04.036
  23. Soylev, T.A. and Francois, R. (2003), "Quality of steel-concrete interface and corrosion of reinforcing steel", Cement Concrete Res., 33(9), 1407-1415. https://doi.org/10.1016/S0008-8846(03)00087-5
  24. UNE 7-436-82, Norma sobre el Metodo de Ensayo para la Determinacion de las caracteristicas de adherencia de las armaduras de pretensado, Tomo 4 Siderurgia, AENOR, Madrid.
  25. Yalciner, H., Eren, O. and Sensoy, S. (2012), "An experimental study on the bond strength between reinforcement bars and concrete as a function of concrete cover, strength and corrosion level", Cement Concrete Res., 42(5), 643-655. https://doi.org/10.1016/j.cemconres.2012.01.003
  26. Yuksel, I. (2015), "Rebar corrosion effects on structural behavior of buildings", Struct. Eng. Mech., 54(6), 1111-1133. https://doi.org/10.12989/sem.2015.54.6.1111
  27. Zhao, Y., Dong, J., Wu, Y. and Jin, W. (2016), "Corrosion-induced concrete cracking model considering corrosion product-filled paste at the concrete/steel interface", Constr. Build. Mater., 116, 273-280. https://doi.org/10.1016/j.conbuildmat.2016.04.097

Cited by

  1. Influence of prestressing on the behavior of uncracked concrete beams with a parabolic bonded tendon vol.77, pp.1, 2018, https://doi.org/10.12989/sem.2021.77.1.001
  2. Flexural performance test of a prestressed concrete beam with plastic bellows vol.79, pp.2, 2021, https://doi.org/10.12989/sem.2021.79.2.223