DOI QR코드

DOI QR Code

Relative Radiometric Normalization for High-Spatial Resolution Satellite Imagery Based on Multilayer Perceptron

다층 퍼셉트론 기반 고해상도 위성영상의 상대 방사보정

  • Seo, Dae Kyo (Dept. of Advanced Technology Fusion, Konkuk University) ;
  • Eo, Yang Dam (Dept. of Technology Fusion Engineering, Konkuk University)
  • Received : 2018.11.13
  • Accepted : 2018.12.11
  • Published : 2018.12.31

Abstract

In order to obtain consistent change detection result for multi-temporal satellite images, preprocessing must be performed. In particular, the preprocessing related to the spectral values can be performed by the radiometric normalization, and relative radiometric normalization is generally utilized. However, most relative radiometric normalization methods assume a linear relationship between the two images, and nonlinear spectral characteristics such as phenological differences are not considered. Therefore, this study proposes a relative radiometric normalization which assumes nonlinear relationships that can perform compositive normalization of radiometric and phenological characteristics. The proposed method selects the subject and reference images, and then extracts the radiometric control set samples through the no-change method. In addition, spectral indexes as well as pixel values are extracted in order to consider sufficient information, and modeling of nonlinear relationships is performed through multilayer perceptron. Finally, the proposed method is compared with the conventional relative radiometric normalization methods, which shows that the proposed method is visually and quantitatively superior.

다중시기의 위성영상에 대해 일관성 있는 변화탐지 결과를 획득하기 위해서는 전처리 과정이 필수적으로 이루어져야 한다. 특히, 분광값과 관련된 전처리 과정은 방사보정으로 수행될 수 있으며, 일반적으로 상대 방사보정이 활용되고 있다. 하지만, 대부분의 상대 방사보정은 두 영상간의 관계를 선형으로 가정하며, 생태학적 차이와 같은 비선형적인 분광특성은 고려되지 않는다. 따라서, 본 연구에서는 방사 및 생태학적 특성에 대한 복합적인 보정을 수행할 수 있는 비선형적인 관계를 가정한 상대 방사보정을 제안하였다. 제안된 방법은 입력영상 및 참조영상을 선정하고, no-change method를 통해 radiometric control set samples를 추출하였다. 또한, 충분한 정보를 고려하기 위하여 화소값뿐만 아니라 분광지수들이 추출되었고, 비선형적인 관계의 모델링은 다층 퍼셉트론을 통해 수행되었다. 최종적으로 기존의 상대 방사보정기법과 비교 분석을 수행하였고, 시각적 및 정략적으로 평가한 결과 제안된 방법이 기존의 상대 방사보정보다 우수한 것을 확인하였다.

Keywords

GCRHBD_2018_v36n6_515_f0001.png 이미지

Fig. 1. The flowchart of the proposed method

GCRHBD_2018_v36n6_515_f0002.png 이미지

Fig. 3. Experimental images of study area (Site 2)

GCRHBD_2018_v36n6_515_f0003.png 이미지

Fig. 4. NC region of Site 1

GCRHBD_2018_v36n6_515_f0004.png 이미지

Fig. 5. NC region of Site 2

GCRHBD_2018_v36n6_515_f0005.png 이미지

Fig. 6. The Comparison of the results of radiometric normalization (Site 1)

GCRHBD_2018_v36n6_515_f0006.png 이미지

Fig. 7. The Comparison of the results of radiometric normalization (Site 2)

GCRHBD_2018_v36n6_515_f0007.png 이미지

Fig. 2. Experimental images of study area (Site 1)

Table 1. Equations of each spectral index

GCRHBD_2018_v36n6_515_t0001.png 이미지

Table 2. Specifications of the satellite sensors

GCRHBD_2018_v36n6_515_t0002.png 이미지

Table 3. NRMSE values of relative radiometric normalization results (Site 1)

GCRHBD_2018_v36n6_515_t0003.png 이미지

Table 4. NRMSE values of relative radiometric normalization results (Site 2)

GCRHBD_2018_v36n6_515_t0004.png 이미지

References

  1. Bai, Y., Tang, P., and Hu, C. (2018), KCCA transformation-based radiometric normalization of multi-temporal satellite images, Remote Sensing, Vol. 10, No. 3, pp. 1-21.
  2. Bao, N., Lechner, A.M., Fletcher, A., Mellor, A., Mulligan, D., and Bai, Z. (2012), Comparison of relative radiometric normalization methods using pseudo invariant features for change detection studies in rural and urban landscape, Journal of Applied Remote Sensing, Vol. 6, No. 1, pp. 1-18.
  3. Biday, S.G. and Bhosle, U. (2010), Radiometric correction of multitemporal satellite imagery, Journal of Computer Science, Vol. 6, No. 9, pp. 1027-1036. https://doi.org/10.3844/jcssp.2010.1027.1036
  4. Carvalho, O.A.D., Guimaraes, R.F., Silva, N.C., Gillespie, A.R., Comes, A.T., Silva, C.R., and Carvalho, A.P.F.D. (2013), Radiometric normalization of temporal images combining automatic detection of pseudo-invariant features from the distance and similarity spectral measures, density scatterplot analysis, and robust regression, Remote Sensing, Vol. 5, No. 6, pp. 2763-2794. https://doi.org/10.3390/rs5062763
  5. Chavez Jr, P.S. (1988), An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data, Remote Sensing of Environment, Vol. 24, No. 3, pp. 459-479. https://doi.org/10.1016/0034-4257(88)90019-3
  6. Choi, J.W. (2015), Unsupervised change detection for very high-spatial resolution satellite imagery by using object-based IR-MAD algorithm, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 33, No. 4, pp. 297-304. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2015.33.4.297
  7. Correa, Y.T.S., Bovolo, F., and Bruzzone, L. (2015), VHR time-series generation by prediction and fusion multisensor images, 2015 IEEE International Geoscience and Remote Sensing Symposium, 26-31 July, Milan, Italy, pp. 3298-3301.
  8. Dai, X. and Khorram, S. (1998), The effects of image misregistration on the accuracy of remotely sensed change detection, IEEE Transactions on GeoScience and Remote Sensing, Vol. 36, No. 5, pp. 1566-1577. https://doi.org/10.1109/36.718860
  9. Du, Y., Teillet, P.M., and Cihlar, J. (2002), Radiometric normalization of multitemporal high-resolution satellite image with quality control for land cover change detection. Remote Sensing of Environment, Vol. 82, No. 1, pp. 123-134. https://doi.org/10.1016/S0034-4257(02)00029-9
  10. Elvidge, C.D., Yuan, D., Weerackoon, R.D., and Lunetta, R.S. (1995), Relative radiometric normalization of Landsat multispectral scanner (MSS) data using an automatic scattergram controlled regression, Photogrammetric Engineering and Remote Sensing, Vol. 61, No. 10, pp. 1255-1260.
  11. Hang, R., Liu, Q., Song, H., Sun, Y., Zhu, F., and Pei, H. (2017), Graph regularized nonlinear ridge regression for remote sensing data analysis, IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, Vol. 10, No. 1, pp. 277-285. https://doi.org/10.1109/JSTARS.2016.2574802
  12. Hong, G. and Zhang, Y. (2008), A comparative study on radiometric normalization using high resolution satellite images, International Journal of Remote Sensing, Vol 29, No. 2, pp. 425-438. https://doi.org/10.1080/01431160601086019
  13. Jiang, W., He, G., Long, T., Ni, Y., Liu, H., Peng, Y., Lv, K., and Wang, G. (2018), Multilayer perceptron neural network for surface water extraction in Landsat 8 OLI satellite images, Remote Sensing, Vol. 10, No. 5, pp. 1-22.
  14. Lee, J.H., Kim, J.S., Jang, H.W., and Lee, J.C. (2013), Drought forecasting using the multi layer perceptron (MLP) artificial neural network model, Journal of Korea Water Resources Association, Vol. 46, No. 12, pp. 1249-1263. https://doi.org/10.3741/JKWRA.2013.46.12.1249
  15. Leite, D.M., Vieira, L.B., Fernandes, H.C., Carneiro, J.E.S., Filho, E.I.F., and Santos, N.T. (2012), Use of digital images for evaluating soil compaction in the culture of beans, Agricultural Engineering, Vol. 36, No. 2, pp. 217-223.
  16. Liu, Y., Yano, T., Nishiyama, S., and Kimura, R. (2007), Radiometric correction for linear change-detection technique: Analysis in bi-temporal space, International Journal of Remote Sensing, Vol. 29, No. 22, pp. 5143-5157.
  17. Patra, S., Ghosh, S., and Ghosh, A. (2008), Change detection of remote sensing images with semi-supervised multilayer perceptron, Fundamental Information, Vol. 84, No. 3, pp. 429-442.
  18. Rahman, M.M., Hay, G.H., Couloigner, I., Hemachandran, B., and Bailin, J. (2014), An assessment of polynomial regression techniques for the relative radiometric normalization (RRN) of high-resolution multi-temporal airborne thermal infrared (TIR) imagery, Remote Sensing, Vol. 6, No. 12, pp. 11810-11828. https://doi.org/10.3390/rs61211810
  19. Reifman, J. and Feldman, E.E. (2002), Multilayer perceptron for nonlinear programming, Computers and Operations Research, Vol 29. No. 9. pp. 1237-1250. https://doi.org/10.1016/S0305-0548(01)00027-2
  20. Sadeghi, V., Ebadi, H., and Ahmadi, F.F. (2013), A new model for automatic normalization of multitemporal satellite images using artificial neural network and mathematical methods, Applied Mathematical Modelling, Vol. 37, No. 9, pp. 6437-6445. https://doi.org/10.1016/j.apm.2013.01.006
  21. Schott, J.R., Salvaggio, C., and Volchok, W.J. (1988), Radiometric scene normalization using pseudo-invariant features, Remote Sensing of Environment, Vol. 26, No. 1, pp. 1-14. https://doi.org/10.1016/0034-4257(88)90116-2
  22. Seo, K.K. (2014), Development of a sales prediction model of electronic appliances using artificial neural network, Journal of Digital Convergence, Vol. 12, No. 11, pp.209-214. https://doi.org/10.14400/JDC.2014.12.11.209
  23. Seo, D.K., Kim, Y.H., Eo, Y.D., Park, W.Y., and Park, H.C. (2017), Generation of radiometric, phenological normalized image based on random forest regression for change detection, Remote Sensing, Vol. 9, No. 1163, pp. 1-21.
  24. Seo, D.K., Kim, Y.H., Eo Y.D, Lee, M.H., and Park, W.Y. (2018a), Fusion of SAR and multispectral images using random forest regression for change detection, ISPRS International Journal of Geo-Information, Vol. 7, No. 10, pp. 1-21.
  25. Seo, D.K., Kim, Y.H., Eo, Y.D., and Park, W.Y. (2018b), Learning-based colorization of grayscale aerial images using random forest regression, Applied Science, Vol. 8, No. 8, pp.1-16.
  26. Suliman, A. and Zhang. Y. (2015), A review on back-propagation neural networks in the application of remote sensing image classification, Journal of Earth Science and Engineering, Vol. 5, No. 1, pp. 52-65.
  27. Taravat, A., Proud, S., Peronaci, S., Frate, F.D., and Oppelt, N. (2015), Multilayer perceptron neural networks model for meteosat second generation SEVIRI daytime cloud masking, Remote Sensing, Vol. 7, No. 2, pp. 1529-1539. https://doi.org/10.3390/rs70201529
  28. Thakur, A. and Mishra, D. (2017), Hyper spectral image classification using multilayer perceptron neural network & functional link ANN, 2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence, 12-13 January, Noida, India, pp. 639-642.
  29. Ya'allah, S.M. and Saradjian, M.R. (2005), Automatic normalization of satellite images using unchanged pixels within urban areas, Information Fusion, Vol. 6, No. 3, pp. 235-241. https://doi.org/10.1016/j.inffus.2004.12.002
  30. Yang, X. and Lo, C.P. (2000), Relative radiometric normalization performance change detection from multidate satellite images, Photogrammetry Engineering and Remote Sensing, Vol. 66, No. 8, pp. 967-980.
  31. Zhou, H., Liu, S., He, J., Wen, Q., Song, L., and Ma, Y. (2016) A new model for the automatic relative radiometric normalization of multiple images with pseudo-invariant features, International Journal of Remote Sensing, Vol. 37, No. 19, pp. 4554-4573. https://doi.org/10.1080/01431161.2016.1213922

Cited by

  1. Multilayer Perceptron-Based Phenological and Radiometric Normalization for High-Resolution Satellite Imagery vol.9, pp.21, 2018, https://doi.org/10.3390/app9214543
  2. A Learning-Based Image Fusion for High-Resolution SAR and Panchromatic Imagery vol.10, pp.9, 2018, https://doi.org/10.3390/app10093298