DOI QR코드

DOI QR Code

Accuracy Assessment of Sharpening Algorithms of Thermal Infrared Image Based on UAV

UAV 기반 TIR 영상의 융합 기법 정확도 평가

  • Received : 2018.11.20
  • Accepted : 2018.12.11
  • Published : 2018.12.31

Abstract

Thermal infrared images have the characteristic of being able to detect objects that can not be seen with the naked eye and have the advantage of easily obtaining information of inaccessible areas. However, TIR (Thermal InfraRed) images have a relatively low spatial resolution. In this study, the applicability of the pansharpening algorithm used for satellite imagery on images acquired by the UAV (Unmanned Aerial Vehicle) was tested. RGB image have higher spatial resolution than TIR images. In this study, pansharpening algorithm was applied to TIR image to create the images which have similar spatial resolution as RGB images and have temperature information in it. Experimental results show that the pansharpening algorithm using the PC1 band and the average of RGB band shows better results for the quantitative evaluation than the other bands, and it has been confirmed that pansharpening results by ATWT (${\grave{A}}$ Trous Wavelet Transform) exhibit superior spectral resolution and spatial resolution than those by HPF (High-Pass Filter) and SFIM (Smoothing Filter-based Intensity Modulation) pansharpening algorithm.

열적외선 영상은 육안으로 식별 할 수 없는 물체를 감지할 수 있는 특성을 가지고 있으며, 접근 불가지역의 정보를 쉽게 얻을 수 있는 장점을 가지고 있다. 그러나 열적외선 영상은 상대적으로 낮은 공간 해상도를 지니는 한계점이 있다. 본 연구에서는 무인 항공기를 활용하여 취득한 영상에 대하여 위성영상에 적용되는 영상융합 알고리즘의 적용 가능성을 연구하였다. RGB 영상은 TIR (Thermal InfraRed) 영상보다 높은 공간 해상도를 가지고 있다. 본 연구에서는 상대적으로 낮은 공간 해상도를 갖는 TIR 영상에 영상융합 알고리즘을 적용하여 RGB 영상과 같은 공간 해상도를 가지며 온도정보를 가지는 융합영상을 생성하고자 한다. 실험결과, PC1 밴드와 RGB 밴드의 평균값을 이용하여 영상융합 알고리즘을 수행한 경우, 다른 밴드를 활용하여 연구를 수행한 경우보다 정량적 평가에 대해서 더 좋은 결과가 나타냈으며, ATWT (${\grave{A}}$ Trous Wavelet Transform) 기법에 의한 융합영상이 HPF (High-Pass Filter) 및 SFIM (Smoothing Filter-based Intensity Modulation) 기법에 의한 융합영상보다 더 뛰어난 분광해상도 및 공간 해상도를 나타냈다.

Keywords

GCRHBD_2018_v36n6_555_f0001.png 이미지

Fig. 1. Input data: (a) RGB Image of Site 1, (b) TIR Image of Site 1, (c) RGB Image of Site 2, (d) TIR Image of Site 2

GCRHBD_2018_v36n6_555_f0002.png 이미지

Fig. 2. Example of lens distortion : (a) Before remove lens distortion, (b) After remove lens distortion

GCRHBD_2018_v36n6_555_f0003.png 이미지

Fig. 3. Upsampling for pansharpening

GCRHBD_2018_v36n6_555_f0004.png 이미지

Fig. 4. Pansharpening result by using PC1 band in urban area: (a) RGB image, (b) TIR image, (c) Pansharpening result by ATWT, (d) Pansharpening result by HPF, (e) Pansharpening result by SFIM

GCRHBD_2018_v36n6_555_f0005.png 이미지

Fig. 5. Pansharpening result by using average of RGB band in urban area: (a) RGB image, (b) TIR image, (c) Pansharpening result by ATWT, (d) Pansharpening result by HPF, (e) Pansharpening result by SFIM

GCRHBD_2018_v36n6_555_f0006.png 이미지

Fig. 6. Pansharpening result by using regression band in urban area: (a) RGB image, (b) TIR image, (c) Pansharpening result by ATWT, (d) Pansharpening result by HPF, (e) Pansharpening result by SFIM

GCRHBD_2018_v36n6_555_f0007.png 이미지

Fig. 7. Pansharpening result by using PC1 band in paddy field: (a) RGB image, (b) TIR image, (c) Pansharpening result by ATWT, (d) Pansharpening result by HPF, (e) Pansharpening result by SFIM

GCRHBD_2018_v36n6_555_f0008.png 이미지

Fig. 8. Pansharpening result by using average of RGB band in paddy field: (a) RGB image, (b) TIR image, (c) Pansharpening result by ATWT, (d) Pansharpening result by HPF, (e) Pansharpening result by SFIM

GCRHBD_2018_v36n6_555_f0009.png 이미지

Fig. 9. Pansharpening result by using regression band in paddy field: (a) RGB image, (b) TIR image, (c) Pansharpening result by ATWT, (d) Pansharpening result by HPF, (e) Pansharpening result by SFIM

Table 1. Characteristics of camera

GCRHBD_2018_v36n6_555_t0001.png 이미지

Table 2. Specification of flight plan

GCRHBD_2018_v36n6_555_t0002.png 이미지

Table 3. Quantitative evaluation results of Site 1 (ATWT)

GCRHBD_2018_v36n6_555_t0003.png 이미지

Table 4. Quantitative evaluation results of Site 2 (ATWT)

GCRHBD_2018_v36n6_555_t0004.png 이미지

Table 5. Quantitative evaluation results of Site 1 (HPF)

GCRHBD_2018_v36n6_555_t0005.png 이미지

Table 6. Quantitative evaluation results of Site 2 (HPF)

GCRHBD_2018_v36n6_555_t0006.png 이미지

Table 7. Quantitative evaluation results of Site 1 (SFIM)

GCRHBD_2018_v36n6_555_t0007.png 이미지

Table 8. Quantitative evaluation results of Site 2 (SFIM)

GCRHBD_2018_v36n6_555_t0008.png 이미지

References

  1. Choi, J.W. (2015), Comparison of image sharpening algorithm for fusion of the airborne hyperspectral and RGB imagery, Journal of the Institute of Construction Technology, Vol. 34, No. 1, pp. 73-80. (in Korean with English abstract)
  2. Dalla Mura, M., Vivone, G., Restaino, R., Addesso, P., and Chanussot, J. (2015). Global and local Gram-Schmidt methods for hyperspectral pansharpening, International Geoscience and Remote Sensing Symposium (IGARSS), IEEE, 26-31 July, Milan, Italy, pp. 37-40.
  3. Gonzalez Audicana, M., Otazu, X., Fors, O., and Seco, A. (2005), Comparison between Mallat's and the a trous discrete wavelet transform based algorithms for the fusion of mulitispectral and panchromatic images, International Journal of Remote Sensing, Vol. 26, No. 3, pp. 595-614. https://doi.org/10.1080/01431160512331314056
  4. Grand, O.M., Ochagavia, H., Baluja, J., Diago, M.P., and Tardaguila, J. (2016), Thermal imaging to detect spatial and temporal variation in the water status of grapevine, The Journal of Horticultural Science and Bio technology, Vol. 91, No. 1, pp. 43-54. https://doi.org/10.1080/14620316.2015.1110991
  5. Hanif, M. and Ali, U. (2006), Optimized visual and thermal image fusion for efficient face recognition, International Conference on Information Fusion-2006, IEEE, 10-13 July, Florence, Italy, pp. 1-6.
  6. Ishimwe, R., Abutalen, K., and Ahmed, F. (2014), Applications of thermal imaging in agriculture-A review, Advances in Remote Sensing, Vol. 3, No. 3, pp. 128-140. https://doi.org/10.4236/ars.2014.33011
  7. Jung, H.S, and Park, S.W. (2014) Multi-sensor fusion of Landsat 8 thermal infrared(TIR) and panchromatic(PAN) images, Sensors, Vol. 14, No. 12, pp. 24425-24440. https://doi.org/10.3390/s141224425
  8. Kim, G.H. (2017), Generation of Land Cover Map Using Orthophoto and DSM Based on Fixed-wing Drone, Master's thesis, Chungbuk National University, Cheongju, Korea, 65p. (in Korean with English abstract)
  9. Kim, Y.H., Choi, J.W., Kim, H.J., and Kim, Y.I. (2009), Modified a'trous algorithm based wavelet pan-sharpening method using IKONOS image, Journal of the Korean Society of Civil Engineers, Vol. 29, No. 2D, pp. 305-309. (in Korean with English abstract)
  10. Ku C.Y. (2002), The study of image fusion for the analysis of satellite imagery data, The Journal of GIS Association of Korea, Vol. 10, No. 2, pp. 345-363. (in Korean with English abstract)
  11. Park, S.W. (2018), Comparison Among Sharpening Algorithms of Thermal Image Based on UAV, Master's thesis, Chungbuk National University, Cheongju, Korea, 43p.
  12. Ranchin, T. and Wald, L. (2000), Fusion of high spatial and spectral resolution images: the ARSIS concept and its implementation, Photogrammetric Engineering and Remote Sensing, Vol. 66, No. 1, pp. 49-61.
  13. Ryu, T.H. and Um, J.S. (2013), Evaluating changing trends of surface temperature in winter according to rooftop color using remotely sensed thermal infrared, The Journal of GIS Association of Korea, Vol. 21, No. 1, pp. 345-363. (in Korean with English abstract)
  14. Vivone, G., Alparone, L., Chanussot, J., Dalla Mura, M., Garzelli, A., Licciardi, G.A., and Wald, L. (2015), A critical comparison among pansharpening algorithms, IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 5, pp. 2565-2586. https://doi.org/10.1109/TGRS.2014.2361734
  15. Wang, Z. and Bovik, A.C. (2002), A universal image quality index, IEEE Signal Processing Letters, Vol. 9, No. 3, pp. 81-84. https://doi.org/10.1109/97.995823
  16. Weinmann, M., Leitloff, J., Hoegner, L., Jutzi, B., Stilla, U., and Hinz, S. (2014), Thermal 3D mapping for object detection in dynamic scenes, ISPRS, Technical Commission Symposium, 17-20 November, Denver, USA, Vol. 2, No. 1, pp. 53-60.
  17. Yu, Y.C., Im, K.M., Seoung, N.H., Kim, D.H., Lee, K.H., and Kang, S.J. (2016), Study on utilization for reservoir diagnosis through thermal image UAV, Proceedings of KSEG 2016 Spring Conference, The Korean Society of Engineering Geology, 7-8 April, Jeju, Korea, pp. 203-204.
  18. Zhang, Y. (2015), A new merging method and its spectral and spacial effects, International Journal of Remote Sensing, Vol. 20, No. 10, pp. 2003-2014. https://doi.org/10.1080/014311699212317
  19. Zhou. J., Civco, D.L., and Silander, J.A.(1998), A wavelet transform method to merge Landsat TM and SPOT panchromatic data, International Journal of Remote Sensing, Vol. 19, No. 4, pp. 747-757.

Cited by

  1. 노천광산 모니터링을 위한 드론 사진측량의 정확도 및 활용성 평가 vol.17, pp.12, 2018, https://doi.org/10.14400/jdc.2019.17.12.191