DOI QR코드

DOI QR Code

Development of Food-Grade Nano-Delivery Systems and Their Application to Dairy Foods: A Review

식품 소재를 이용한 나노전달체의 제조 및 유식품 적용에 관한 고찰

  • Ha, Ho-Kyung (Department of Animal Science and Technology, Sunchon National University) ;
  • Lee, Won-Jae (Department of Animal Bioscience and Institute of Agriculture and Life Science, Gyeongsang National University)
  • 하호경 (순천대학교 동물자원과학과) ;
  • 이원재 (경상대학교 동물생명과학과(농업생명과학연구원))
  • Received : 2018.12.17
  • Accepted : 2018.12.24
  • Published : 2018.12.31

Abstract

Nano-delivery systems, such as nanoparticles, nanoemulsions, and nanoliposomes, are carriers that have been used to enhance the chemical as well as physical stability and bioavailability of bioactive compound. Food-grade nano-delivery system can be produced with edible biopolymers including proteins and carbohydrates. In addition to the low-toxicity, biocompatibility, and biodegradability of these biopolymers, their functional characteristics, such as their ability to bind hydrophobic bioactive compounds and form a gel, make them potential and ideal candidates for the fortification of bioactive compounds in functional dairy foods. This review focuses on different types of nano-delivery systems and edible biopolymers as delivery materials. In addition, the applications of food-grade nano-delivery systems to dairy foods are also described.

Keywords

References

  1. Augustin, M. A. and Hemar, Y. 2009. Nano-and micro-structured assemblies for encapsulation of food ingredients. Chem. Soc. Rev. 38:902-912. https://doi.org/10.1039/B801739P
  2. Birnbaum, D. T., Kosmala, J. D., Henthorn, D. B. and Brannon-Peppas, L. 2000. Controlled release of ${\beta}$-estradiol from PLAGA microparticles: The effect of organic phase solvent on encapsulation and release. J. Control. Release. 65:375-387. https://doi.org/10.1016/S0168-3659(99)00219-9
  3. Bouchemal, K., Briancon, S., Perrier, E. and Fessi, H. 2004. Nano-emulsion formulation using spontaneous emulsification: Solvent, oil and surfactant optimisation. Int. J. Pharm. 280:241-251. https://doi.org/10.1016/j.ijpharm.2004.05.016
  4. Bruschi, M. L., Cardoso, M. L. C., Lucchesi, M. B. and Gremiao, M. P. D. 2003. Gelatin microparticles containing propolis obtained by spray-drying technique: Preparation and characterization. Int. J. Pharm. 264:45-55. https://doi.org/10.1016/S0378-5173(03)00386-7
  5. Bryant, C. M. and McClements, D. J. 1998. Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey. Trends Food Sci. Technol. 9:143-151. https://doi.org/10.1016/S0924-2244(98)00031-4
  6. Chen, L., Remondetto, G. E. and Subirade, M. 2006. Food protein-based materials as nutraceutical delivery systems. Trends Food Sci. Technol. 17:272-283. https://doi.org/10.1016/j.tifs.2005.12.011
  7. Chen, L. and Subirade, M. 2005. Chitosan/${\beta}$-lactoglobulin core-shell nanoparticles as nutraceutical carriers. Biomaterials. 26:6041-6053. https://doi.org/10.1016/j.biomaterials.2005.03.011
  8. Chuacharoen, T. and Sabliov, C. M. 2016. The potential of zein nanoparticles to protect entrapped ${\beta}$-carotene in the presence of milk under simulated gastrointestinal (GI) conditions. LWT Food Sci. Technol. 72:302-309. https://doi.org/10.1016/j.lwt.2016.05.006
  9. Considine, T., Flanagan, J. and Loveday, S. M. 2009. Interactions between milk proteins and micronutrients. Pages 421-449 in Milk proteins, from expression to food. Thompson, A., Boland, M. J. and Singh, H. 1st ed. Elsevier, Academic Press. Amsterdam, The Netherlands.
  10. Du, Y., Wang, L., Yuan, H., Wei, X. and Hu, F. 2009. Preparation and characteristics of linoleic acid-grafted chitosan oligosaccharide micelles as a carrier for doxorubicin. Colloids Surf. B. 69:257-263. https://doi.org/10.1016/j.colsurfb.2008.11.030
  11. Elzoghby, A. O., Abo El-Fotoh, W. S. and Elgindy, N. A. 2011. Casein-based formulations as promising controlled release drug delivery systems. J. Control. Release. 153:206-216. https://doi.org/10.1016/j.jconrel.2011.02.010
  12. Fan, W., Xia, D., Zhu, Q., Li, X., He, S., Zhu, C., Guo, S., Hovgaard, L., Yang, M. and Gan, Y. 2018. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery. Biomaterials. 151:13-23. https://doi.org/10.1016/j.biomaterials.2017.10.022
  13. Fathi, M., Martín, A. and McClements, D. J. 2012. Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends Food Sci. Technol. 39:18-39.
  14. Forrest, S. A., Yada, R. Y. and Rousseau, D. 2005. Interactions of vitamin $D_3$ with bovine ${\beta}$-lactoglobulin A and ${\beta}$-casein. J. Agric. Food Chem. 53:8003-8009. https://doi.org/10.1021/jf050661l
  15. Ghorbanzade, T., Jafari, S. M., Akhavan, S. and Hadavi, R. 2017. Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chem. 216:146-152. https://doi.org/10.1016/j.foodchem.2016.08.022
  16. Ha, H. K., Kim, J. W., Lee, M. R. and Lee, W. J. 2013. Formation and characterization of quercetin-loaded chitosan oligosaccharide/${\beta}$-lactoglobulin nanoparticle. Food Res. Int. 52:82-90. https://doi.org/10.1016/j.foodres.2013.02.021
  17. Ha, H. K., Jeon, N. E., Kim, J. W., Han, K. S., Yun, S. S., Lee, M. R. and Lee, W. J. 2016. Physicochemical characterization and potential prebiotic effect of whey protein isolate/inulin nano complex. Korean J. Food Sci. Anim. Resour. 36:267-274. https://doi.org/10.5851/kosfa.2016.36.2.267
  18. Ha, H. K., Kim, J. W., Lee, M. R., Jun, W. and Lee, W. J. 2015. Cellular uptake and cytotoxicity of beta-lactoglobulin nanoparticles: The effects of particle size and surface charge. Asian-Australas J. Anim. Sci. 28:420-427. https://doi.org/10.5713/ajas.14.0761
  19. Ha, H. K., Nam, G. W., Khang, D., Park, S. J., Lee, M. R. and Lee, W. J. 2017. Development of two-step temperature process to modulate the physicochemical properties of beta-lactoglobulin nanoparticles. Korean J. Food Sci. Anim. Resour. 37:123-133. https://doi.org/10.5851/kosfa.2017.37.1.123
  20. Ha, H., Lee, M. and Lee, W. 2018. Oxidative stability of DHA in ${\beta}$-lactoglobulin/oleic acid-modified chitosan oligosaccharide nanoparticles during storage in skim milk. LWT Food Sci. Technol. 90:440-447. https://doi.org/10.1016/j.lwt.2017.12.055
  21. Hu, Q. and Luo, Y. 2018. Recent advances of polysaccharide-based nanoparticles for oral insulin delivery. Int. J. Biol. Macromol. 120:775-782. https://doi.org/10.1016/j.ijbiomac.2018.08.152
  22. Huang, M., Ma, Z., Khor, E. and Lim, L. 2002. Uptake of FITC-chitosan nanoparticles by A549 cells. Pharm. Res. 19:1488-1494. https://doi.org/10.1023/A:1020404615898
  23. Hwang, J., Ha, H., Lee, M., Kim, J. W., Kim, H. and Lee, W. 2017. Physicochemical property and oxidative stability of whey protein concentrate multiple nanoemulsion containing fish oil. J. Food Sci. 82:437-444. https://doi.org/10.1111/1750-3841.13591
  24. Ishak, K. A., Mohamad Annuar, M. S. and Ahmad, N. 2017. Nano-delivery systems for nutraceutical application. Pages 179-202 in Nanotechnology applications in food: Flavor, stability, nutrition, and safety. Opera, A. E. and Grumezescu, A. M. 1st Ed. Elsevier, Academic Press. Amsterdam, The Netherlands.
  25. Ishizaka, T., Endo, K. and Koishi, M. 1981. Preparation of egg albumin microcapsules and microspheres. J. Pharm. Sci. 70:358-363. https://doi.org/10.1002/jps.2600700404
  26. Izquierdo, P., Esquena, J., Tadros, T. F., Dederen, C., Garcia, M., Azemar, N. and Solans, C. 2002. Formation and stability of nano-emulsions prepared using the phase Iinversion temperature method. Langmuir. 18:26-30. https://doi.org/10.1021/la010808c
  27. Janes, K. A., Fresneau, M. P., Marazuela, A., Fabra, A. and Alonso, M. J. 2001. Chitosan nanoparticles as delivery systems for doxorubicin. J. Control. Release. 73:255-267. https://doi.org/10.1016/S0168-3659(01)00294-2
  28. Jones, O. G. and McClements, D. J. 2010. Functional biopolymer particles: Design, fabrication, and applications. Compr. Rev. Food Sci. Food Saf. 9:374-397. https://doi.org/10.1111/j.1541-4337.2010.00118.x
  29. Lane, K. E., Li, W., Smith, C. and Derbyshire, E. 2014. The bioavailability of an omega-3-rich algal oil is improved by nanoemulsion technology using yogurt as a food vehicle. Int. J. Food Sci. Tech. 49:1264-1271. https://doi.org/10.1111/ijfs.12455
  30. Lee, M., Choi, H., Ha, H. and Lee, W. 2013. Production and characterization of beta-lactoglobulin/alginate nanoemulsion containing coenzyme $Q_{10}$: Impact of heat teatment and alginate concentrate. Korean J. Food Sci. Anim. Resour. 33:67-74. https://doi.org/10.5851/kosfa.2013.33.1.67
  31. Li, P., Dai, Y. N., Zhang, J. P., Wang, A. Q. and Wei, Q. 2008. Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. Int. J. Biomed. Sci. 4:221-228.
  32. Liu, L., Zhou, C., Xia, X. and Liu, Y. 2016. Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: Preparation and functional evaluation. Int. J. Nanomedicine. 11:671-769.
  33. Liang, L., Tajmir-Riahi, H. and Subirade, M. 2008. Interaction of ${\beta}$-lactoglobulin with resveratrol and its biological implications. Biomacromolecules. 9:50-56. https://doi.org/10.1021/bm700728k
  34. Livney, Y. D. 2010. Milk proteins as vehicles for bioactives. Curr. Opin. Colloid Interface Sci. 15:73-83. https://doi.org/10.1016/j.cocis.2009.11.002
  35. Matalanis, A., Jones, O. G. and McClements, D. J. 2011. Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocoll. 25:1865-1880. https://doi.org/10.1016/j.foodhyd.2011.04.014
  36. Mauguet, M., Legrand, J., Brujes, L., Carnelle, G., Larre, C. and Popineau, Y. 2002. Gliadin matrices for microencapsulation processes by simple coacervation method. J. Microencapsul. 19:377-384. https://doi.org/10.1080/02652040110105346
  37. McClements, D. J. and Rao, J. 2011. Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. Nutr. 51:285-330. https://doi.org/10.1080/10408398.2011.559558
  38. Mozafari, M. R., Khosravi-Darani, K., Borazan, G. G., Cui, J., Pardakhty, A. and Yurdugul, S. 2008. Encapsulation of food ingredients using nanoliposome technology. Int. J. Food Prop. 11:833-844. https://doi.org/10.1080/10942910701648115
  39. Roff, C. F. and Foegeding, E. A. 1996. Dicationic-induced gelation of pre-denatured whey protein isolate. Food Hydrocoll. 10:193-198. https://doi.org/10.1016/S0268-005X(96)80034-8
  40. Ron, N., Zimet, P., Bargarum, J. and Livney, Y. D. 2010. Beta-lactoglobulin-polysaccharide complexes as nanovehicles for hydrophobic nutraceuticals in non-fat foods and clear beverages. Int. Dairy J. 20:686-693. https://doi.org/10.1016/j.idairyj.2010.04.001
  41. Sarmento, B., Ribeiro, A., Veiga, F., Sampaio, P., Neufeld, R. and Ferreira, D. 2007. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm. Res. 24:2198-2206. https://doi.org/10.1007/s11095-007-9367-4
  42. Singh, H. and Ye, A. 2009. Interactions and functionality of milk proteins in food emulsions. Pages 321-345 in Milk proteins, from expression to food. Thompson, A., Boland, M. J. and Singh, H. 1st ed. Elsevier, Academic Press. Amsterdam, The Netherlands.
  43. Solans, C., Izquierdo, P., Nolla, J., Azemar, N. and Garcia-Celma, M. J. 2005. Nanoemulsions. Curr. Opin. Colloid Interface Sci. 10:102-110. https://doi.org/10.1016/j.cocis.2005.06.004
  44. Xia, S., Xu, S., Zhang, X., Zhong, F. and Wang, Z. 2009. Nanoliposomes mediate coenzyme $Q_{10}$ transport and accumulation across human intestinal Caco-2 cell monolayer. J. Agric. Food Chem. 57:7989-7996. https://doi.org/10.1021/jf901068f
  45. Xue, J., Davidson, P. M. and Zhong, Q. 2015. Antimicrobial activity of thyme oil co-nanoemulsified with sodium caseinate and lecithin. Int. J. Food Microbiol. 210:1-8. https://doi.org/10.1016/j.ijfoodmicro.2015.06.003
  46. Zimet, P. and Livney, Y. D. 2009. Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ${\omega}$-3 polyunsaturated fatty acids. Food Hydrocoll. 23:1120-1126. https://doi.org/10.1016/j.foodhyd.2008.10.008

Cited by

  1. 고령자를 위한 영양강화 유제품 개발 II. 고령자 영양강화 적용 기술 현황 vol.37, pp.4, 2018, https://doi.org/10.22424/jmsb.2019.37.4.213