DOI QR코드

DOI QR Code

A Novel Method for the Identification of the Rotor Resistance and Mutual Inductance of Induction Motors Based on MRAC and RLS Estimation

  • Jo, Gwon-Jae (Department of Electrical Engineering, Kyungpook National University) ;
  • Choi, Jong-Woo (Department of Electrical Engineering, Kyungpook National University)
  • Received : 2017.06.16
  • Accepted : 2017.10.06
  • Published : 2018.03.20

Abstract

In the rotor-flux oriented control used in induction motors, the electrical parameters of the motors should be identified. Among these parameters, the mutual inductance and rotor resistance should be accurately tuned for better operations. However, they are more difficult to identify than the stator resistance and stator transient inductance. The rotor resistance and mutual inductance can change in operations due to flux saturation and heat generation. When detuning of these parameters occurs, the performance of the control is degenerated. In this paper, a novel method for the concurrent identification of the two parameters is proposed based on recursive least square estimation and model reference adaptive control.

Keywords

E1PWAX_2018_v18n2_492_f0001.png 이미지

Fig. 1. MRAC system.

E1PWAX_2018_v18n2_492_f0002.png 이미지

Fig. 2. MRAC system for the proposed parameter identification.

E1PWAX_2018_v18n2_492_f0003.png 이미지

Fig. 3. Calculation of the regression vector and output.

E1PWAX_2018_v18n2_492_f0004.png 이미지

Fig. 4. Coefficient controller.

E1PWAX_2018_v18n2_492_f0005.png 이미지

Fig. 5. Process of the proposed parameter identification.

E1PWAX_2018_v18n2_492_f0006.png 이미지

Fig. 6. Rotor-flux oriented control with the proposed parameter identification in an induction motor.

E1PWAX_2018_v18n2_492_f0007.png 이미지

Fig. 7. Responses of coefficients. (a) On the d-axis. (b) Upon averaging.

E1PWAX_2018_v18n2_492_f0008.png 이미지

Fig. 8. Well-tuned case for all of the stator parameters (600 rpm, 50 % load). (a) , , and currents. (b) |? |.

E1PWAX_2018_v18n2_492_f0009.png 이미지

Fig. 9. Detuned case of the stator parameters. (a)case (300 rpm, 80 % load). (b) case (1200 rpm,30 % load).

E1PWAX_2018_v18n2_492_f0010.png 이미지

Fig. 10. Well-tuned case for all of the stator parameters (600 rpm,50 % load). (a) , and currents. (b) Voltages and speed. (c)|? |.

E1PWAX_2018_v18n2_492_f0011.png 이미지

Fig. 11. case (300 rpm, 80 % load). (a) ,and currents. (b) Voltages and speed.

E1PWAX_2018_v18n2_492_f0012.png 이미지

Fig. 12. case (1200 rpm, 30 % load). (a) ,and currents. (b) Voltages and speed.

E1PWAX_2018_v18n2_492_f0013.png 이미지

Fig. 13. Sets of estimated parameters under various conditions. (a) Beginning of experimental activity. (b) Two hours after experimentalactivity.

E1PWAX_2018_v18n2_492_f0014.png 이미지

Fig. 14. In cases of speed operation with fluctuating load. (a) At300 rpm. (b) At 600 rpm. (c) At 1200 rpm.

TABLE I SPECIFICATIONS AND PARAMETERS OF AN INDUCTION MOTOR

E1PWAX_2018_v18n2_492_t0001.png 이미지

TABLE II ERRORS IN THE ESTIMATED VALUES OF AND IN IN VARIOUS SITUATIONS (UNIT: %)

E1PWAX_2018_v18n2_492_t0002.png 이미지

TABLE III ERRORS IN THE ESTIMATED VALUES OF AND IN IN VARIOUS SITUATIONS (UNIT: %)

E1PWAX_2018_v18n2_492_t0003.png 이미지

References

  1. S. Wade, M. W. Dunnigan, and B. W. Williams, "A new method of rotor resistance estimation for vector-controlled induction machines," IEEE Trans. Ind. Electron., Vol. 44, No. 2, pp. 247-257, Apr. 1997. https://doi.org/10.1109/41.564164
  2. Ba-Razzouk, A. Chérity, and P. Sicard, "Implementation of a DSP based real-time estimator of induction motors rotor time constant," IEEE Trans. Pow. Electron., Vol. 17, No. 4, pp. 534-542, Jul. 2002. https://doi.org/10.1109/TPEL.2002.800963
  3. S. -H. Jeon, K. -K. Oh, and J. -Y. Choi, "Flux observer with online tuning of stator and rotor resistances for induction motors," IEEE Trans. Ind. Elec., Vol. 49, No. 3, pp. 653-664, Jun. 2002. https://doi.org/10.1109/TIE.2002.1005393
  4. F. R. Salmasi, T. A. Najafabadi, and P. J. Maralani, "An adaptive flux observer with online estimation of DC-link voltage and rotor resistance for VSI-based induction motors," IEEE Trans. Pow. Electron., Vol. 25, No. 5, pp. 1310-1319, May 2010. https://doi.org/10.1109/TPEL.2009.2038268
  5. L. Zhao, J. Huang, J. Chen, and M. Ye, "A parallel speed and rotor time constant identification scheme for indirect field oriented induction motor drives," IEEE Trans. Power Electron., Vol. 31, No. 9, pp. 6494-6503, Sep. 2016. https://doi.org/10.1109/TPEL.2015.2504399
  6. X. Yu, M. W. Dunnigan, and B. W. Williams, "A novel rotor resistance identification method for an indirect rotor flux-orientated controlled induction machine system," IEEE Trans. Power Electron., Vol. 17, No. 3, pp. 353-364, May 2002.
  7. S. Maiti, C. Chakraborty, Y. Hori, and M. C. Ta, "Model reference adaptive controller-based rotor resistance and speed estimation techniques for vector controlled induction motor drive utilizing reactive power," IEEE Trans. Ind. Electron., Vol. 55, No. 2, pp. 594-601, Feb. 2008. https://doi.org/10.1109/TIE.2007.911952
  8. K. Wang, B. Chen, G. Shen, W. Yao, K. Lee, and Z. Lu, "Online updating of rotor time constant based on combined voltage and current mode flux observer for speedsensorless AC drives," IEEE Trans. Ind. Elec., Vol. 61, No. 9, pp. 4583-4593, Sep. 2014. https://doi.org/10.1109/TIE.2013.2288227
  9. D. P. Marcetic and S. N. Vukosavic, "Speed-sensorless AC drives with the rotor time constant parameter update," IEEE Trans. Ind. Electron., Vol. 54, No. 5, pp. 2618-2625, Oct. 2007. https://doi.org/10.1109/TIE.2007.899880
  10. A. Yoo, "Robust on-line rotor time constant estimation for induction machines," J. Power Electron., Vol. 14, No. 5, pp. 1000-1007, 2014. https://doi.org/10.6113/JPE.2014.14.5.1000
  11. D. M. Reed, H. F. Hofmann, and J. Sun, "Offline identification of induction machine parameters with core loss estimation using the stator current locus," IEEE Trans. Energy Convers., Vol. 31, No. 4, Dec. 2016.
  12. S.-K. Sul, "A novel technique of rotor resistance estimation considering variation of mutual inductance," IEEE Trans. Ind. Appl., Vol. 25, No. 4, pp. 578-587, Jul./Aug. 1989. https://doi.org/10.1109/28.31234
  13. S.-H. Lee, A. Yoo, H.-J. Lee, Y.-D. Yoon, and B.-M. Han, "Identification of induction motor parameters at standstill based on integral calculation," IEEE Tran. Ind. App., Vol. 53, No. 3, May/Jun. 2017.
  14. C. Attaianese, A. Damiano, G. Gtto, I. Marongiu, and A. Perfetto, "Induction motor drive parameters identification," IEEE Trans. Power Electron., Vol. 13, No. 6, pp. 1112-1122, Nov. 1998. https://doi.org/10.1109/63.728338
  15. D. Telford, M. W. Dunnigan, and B. W. Williams, "Online identification of induction machine electrical parameters for vector control loop tuning," IEEE Trans. Ind. Electron., Vol. 50, No. 2, pp. 253-261, Apr. 2003. https://doi.org/10.1109/TIE.2003.809397
  16. Y. He, Y. Wang, Y. Feng, and Z. Wang, "Parameter identification of an induction machine at standstill using the vector constructing method," IEEE Trans. Power Electron., Vol. 27, No. 2, pp. 905-915, Feb. 2012. https://doi.org/10.1109/TPEL.2010.2089699
  17. B. Proca and A. Keyhani, "Sliding-mode flux observer with online rotor parameter estimation for induction motors," IEEE Trans. Ind. Electron., Vol. 54, No. 2, pp. 716-723, Apr. 2007. https://doi.org/10.1109/TIE.2007.891786
  18. M. Wlas, Z. Krzeminski, and H. A. Toliyat, "Neuralnetwork- based parameter estimations of induction motors," IEEE Trans. Ind. Electron., Vol. 55, No. 4, pp. 1783-1794, Apr. 2008. https://doi.org/10.1109/TIE.2008.918615
  19. X. Xu and D. W. Novotny, "Implementation of direct stator flux orientation control on a versatile DSP based system," IEEE Trans. Ind. Appl., Vol. 27, No. 4, pp. 694-700, Jul./Aug. 1991. https://doi.org/10.1109/28.85484
  20. P. L. Jansen and R. D. Lorenz, "A physically insightful approach to the design and accuracy assessment of flux observer for field oriented induction machine drives," IEEE Trans. Ind. Appl., Vol. 30, No. 1, pp. 101-110, Jan./Feb. 1994. https://doi.org/10.1109/28.273627
  21. I. Takahasi and T. Noguchi, "A new quick-response and high-efficiency control strategy of an induction motor," IEEE Trans. Ind. Appl., Vol. IA-22, No. 5, pp. 820-827, Sep./Oct. 1986. https://doi.org/10.1109/TIA.1986.4504799
  22. M. H. Hayes, "Recursive Least Squares," in Statistical Digital Signal Processing and Modeling, John Wiley & Sons, Inc., Chap. 9.4, pp. 541-553, 1996.
  23. J.-W. Choi and S.-K. Sul, "Inverter output voltage synthesis using novel dead time compensation," IEEE Trans. Power Electron., Vol. 11, No. 2, pp. 221-227, Mar. 1996. https://doi.org/10.1109/63.486169