DOI QR코드

DOI QR Code

Three-dimensional Effects of an Axi-symmetric Pintle Nozzle

축대칭 핀틀노즐의 3차원 효과 분석

  • Lee, Gang-Min (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Sung, Hong-Gye (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • Received : 2018.03.20
  • Accepted : 2018.07.10
  • Published : 2018.12.01

Abstract

In order to determine whether three-dimensional effects exist in a pintle nozzle of axisymmetric shape, a three-dimensional numerical analysis was performed. The compressibility correction was implemented with the k-${\omega}$ SST turbulence model to predict the complex flow separation transition in acceptable accuracy. Recirculation zones were observed at both the front end and rear faces of the pintle, and the flow through the pintle nozzle conveyed complex shock wave structures. Three-dimensional effects that resulted from the reasonable flow separation location were noted, and a trace of the transient pressure increase was observed, mismatched by a two-dimensional axi-symmetric analysis.

축 대칭 형상의 핀틀 노즐에서 3차원 효과 여부를 파악하기 위하여 3차원 수치해석을 수행하였다. 초음속 노즐을 통해 배출되는 압축성 유동을 정확히 예측하기 위해 k-${\omega}$ SST 난류 모델에 압축성 보정 모델을 결합하였다. 핀틀의 전단과 후단에서 재순환 영역이 관찰되었으며, 노즐을 통해 분출되는 유동은 복잡한 충격파 구조를 형성하였다. 각 핀틀 위치에서 2차원 축대칭과 3차원의 수치해석 결과를 실험데이터와 비교해 볼 때 3차원 결과가 접선 방향 유동의 3차원 효과로 인해 유동 박리 위치와 박리로 인한 압력 상승 변화과정을 정확히 예측하였다.

Keywords

References

  1. Heo, J. Y., Jeong, K. Y. and Sung, H. G., "Numerical Study of tne Dynamic Characteristics of Pintle Nozzles for Variable Thrust", Journal of Propulsion and Power, Vol. 31, No. 1, pp.230-237, 2015. https://doi.org/10.2514/1.B35257
  2. Chwalowski, Pawel., Smith-Kent, Randall. and Loh, Hai-Tien., "Analytical Contouring of Pintle Nozzle Exit Cone using Computational Fluid Dynamics", 31st Joint Propulsion Conference, San Diego, CA, USA, A1AA 95-2877, July 1995.
  3. Ostander, M. J., Bergmans, J. L. and Thomas, M. E., "Pintle Motor Challenges for Tactical Missiles", 36th Joint Propulsion Conference, Huntsville, Alabama, USA, AIAA 2000-3310, July 2000.
  4. Prozan, R. J., "CFD Prediction of Nozzle Flow Separation without Boundary Layer Resolution", 35th Joint Propulsion Conference, Los Angeles, California, USA, AIAA 99-2645, June 1999.
  5. Kim, J. K. and Park, J. H., "Investigation of Pintle Shape Effect on the Nozzle Perfomance", Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 36, No. 8, pp.790-796, 2008. https://doi.org/10.5139/JKSAS.2008.36.8.790
  6. Kim, J. K. and Park, J. H., "Numerical Study of the Effect of Pintle Shape on the Thrust Level," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 37, No. 5, pp.476-482, 2009. https://doi.org/10.5139/JKSAS.2009.37.5.476
  7. Lee, J. H., Park, B. H. and Chang, H. B., "Analysis of the Pintle Nozzle Characteristics - I : Steady State Performance" The Korean Society of Propulsion Engineers Fall Conference, Yeosu, Korea, pp.355-361, November 2012.
  8. Kim, J. K., Lee, J. H. and Chang, H. B., "Computational Investigation of Pintle Nozzle Flow", Journal of the Korean Society of Propulsion Engineers, Vol. 13, No. 2, pp.35-41, 2009.
  9. Sung, H. G., Jeong, K. Y. and Heo, J. Y., "Performance characteristics of a pintle nozzle using the conformal sliding mesh technique", Aerospace Science and Technology, Vol. 61, pp.85-94, 2017. https://doi.org/10.1016/j.ast.2016.11.022
  10. Menter, F. R., Kuntz, M. and Langtry, R., "Ten Years of Industrial Experienced with the SST Turbulence Model", Turbulence, Heat and Mass Transfer 4, pp.625-632, 2003.
  11. Sarkar, S., Erlebacher, G., Hussaini, M. Y. and Kreiss, H. O., "Analysis and Modelling of Dilatational Terms in Compressible Turbulence", Journal of Fluid Mechanics, Vol. 227, pp.473-493, 1991. https://doi.org/10.1017/S0022112091000204
  12. Kim, K. H., Lee, K. T., Rho, O. H. and Kim, C. A., "Development and analysis of AUSMPW+", Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 29, No. 8, pp.45-56, 2001.
  13. Yoon, S. K. and Jameson, A., "Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations", AIAA, Vol. 26, No. 9, pp.1025-1026, 1988. https://doi.org/10.2514/3.10007
  14. S., Venkateswaran, Li, D. and Merkle, C. L., "Influence of stagnation regions on preconditioned solution at low speeds", 41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA, AIAA 2003-435, January 2003.
  15. Choi, Y. H. and Merkle, C. L., "The Application of Preconditioning in Viscous Flows", Journal of Computational Physics, Vol. 105, No. 2, pp.207-223, 1993. https://doi.org/10.1006/jcph.1993.1069
  16. Lee, J. H., Park, B. H. and Yoon, W. S., "Parametric Investigation of the Pintle-perturbed Conical Nozzle Flows", Aerospace Science and Technology, Vol. 26, No. 1, pp.268-279, 2013. https://doi.org/10.1016/j.ast.2012.05.005
  17. Ostlund, J. and Muhammad-Klingmann, B., "Supersonic flow separation with application to rocket engine nozzles", Applied Mechanics Review, Vol. 58, No. 3 pp.143-175, 2005. https://doi.org/10.1115/1.1894402