DOI QR코드

DOI QR Code

Gut Microbiome and Gastrointestinal Diseases

장내 세균총과 위장관 질환

  • Hwang, Soonjae (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju) ;
  • Kim, Sung Hoon (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju) ;
  • Rhee, Ki-Jong (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju)
  • 황순재 (연세대학교 원주캠퍼스 보건과학대학 임상병리학과) ;
  • 김성훈 (연세대학교 원주캠퍼스 보건과학대학 임상병리학과) ;
  • 이기종 (연세대학교 원주캠퍼스 보건과학대학 임상병리학과)
  • Received : 2018.01.26
  • Accepted : 2018.02.08
  • Published : 2018.03.31

Abstract

The gut microbiome has been studied extensively over the past decade with most scientific reports focused on the adverse role of the gut microbiome on gastrointestinal diseases. For example, the altered gut microbiome exacerbates the development of immune system-mediated damage in many diseases. The most studied pathologies include irritable bowel syndrome, inflammatory bowel diseases, and colitis-associated cancer. On the other hand, intestinal microflora is also beneficial and contributes to the intestinal physiology by the synthesis of vitamins, production of short chain fatty acids and bile acid metabolism, thereby maintaining gut homeostasis. Therefore, the balance between commensal and pathogenic bacteria populations influences mainly the maintenance of intestinal health. Changes in the intestinal microflora have been suspected to be the underlying causes of multiple diseases. Despite the immense amount of published data, the optimal gut microbiome composition is still controversial. This review briefly outlines the connection between the gut microbiome and critical gastrointestinal diseases focusing on three prominent intestinal disorders: irritable bowel syndrome, inflammatory bowel diseases, and colitis-associated cancer disorders. Finally, intervention strategies using natural products for the alleviation of these diseases and the maintenance of a health gut microbiome are suggested.

본 연구에서는 최근에 연구되어 온 장내 세균총이 특히 주요 장질환의 발병에 있어서, 어떠한 역할을 하는지 보고된 여러 문헌들을 중심으로 연구 결과들을 요약 하였다. 예를 들자면, 면역체계를 매개하여 병이 악화되는 여러 질환에서 정상일 때와 달리 바뀐 장내 세균총을 통해 악화된다고 보고된 바 있다. 장내 세균총의 역할에 대해 많이 연구된 장질환 중에서, 많이 연구된 3개의 질환은 과민성 장 증후군, 염증성 장질환, 대장암이다. 그러나, 사람의 장내에 존재하는 세균총은 몸에 이로우며, 비타민 A 합성, 단사슬지방산의 생산, 담즙산 대사과정과 같은 장내 생리적 기능 매개를 통해 장내 항상성을 유지한다고 알려져 있다. 이와 같이, 장내에 존재하는 이로운 세균 군집과 해로운 세균 군집의 균형은 장내 건강에 주요한 영향을 미친다. 장질환을 포함한 여러 질환의 발병 및 진행에서 장내 세균총의 변화가 주요 원인으로 추측되고 있는 실정이다. 현재까지 보고된 많은 연구 결과에도 불구하고, 어떤 장내 세균총 구성이 몸에 가장 이로운 지학계에서도 의견이 분분한 상태이다. 본 논문에서는, 주요 장질환으로 알려진 과민성 장 증후군, 염증성 장질환, 대장암과 장내 세균총과의 관계에 대해 연구한 논문들에 대해 연결 지어 요약하였다. 마지막으로, 장내 세균총을 매개로 악화되는 장질환을 완화하며, 장내 건강을 지키기 위한 수단으로 천연물을 이용한 치료 전략을 제시하고자 한다.

Keywords

References

  1. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022-1023. https://doi.org/10.1038/4441022a
  2. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009;106(10):3698-3703. https://doi.org/10.1073/pnas.0812874106
  3. Kassinen A, Krogius-Kurikka L, Makivuokko H, Rinttila T, Paulin L, Corander J, et al. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology. 2007;133(1):24-33. https://doi.org/10.1053/j.gastro.2007.04.005
  4. Jeffery IB, O'Toole PW, Ohman L, Claesson MJ, Deane J, Quigley EM, et al. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut. 2012;61(7):997-1006. https://doi.org/10.1136/gutjnl-2011-301501
  5. Rajilic-Stojanovic M, Biagi E, Heilig HG, Kajander K, Kekkonen RA, Tims S, et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology. 2011;141(5):1792-1801. https://doi.org/10.1053/j.gastro.2011.07.043
  6. Saulnier DM, Riehle K, Mistretta TA, Diaz MA, Mandal D, Raza S, et al. Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology. 2011;141(5):1782-1791. https://doi.org/10.1053/j.gastro.2011.06.072
  7. Farup PG, Jacobsen M, Ligaarden SC, Rudi K. Probiotics, symptoms, and gut microbiota: what are the relations? A randomized controlled trial in subjects with irritable bowel syndrome. Gastroenterol Res Pract. 2012;2012:214102.
  8. Lee BJ, Bak YT. Irritable bowel syndrome, gut microbiota and probiotics. J Neurogastroenterol Motil. 2011;17(3):252-266. https://doi.org/10.5056/jnm.2011.17.3.252
  9. Choi CH, Jo SY, Park HJ, Chang SK, Byeon JS, Myung SJ. A randomized, double-blind, placebo-controlled multicenter trial of saccharomyces boulardii in irritable bowel syndrome: Effect on quality of life. J Clin Gastroenterol. 2011;45(8):679-683. https://doi.org/10.1097/MCG.0b013e318204593e
  10. Kumura H, Tanoue Y, Tsukahara M, Tanaka T, Shimazaki K. Screening of dairy yeast strains for probiotic applications. J Dairy Sci. 2004;87(12):4050-4056. https://doi.org/10.3168/jds.S0022-0302(04)73546-8
  11. Lennard-Jones JE. Classification of inflammatory bowel disease. Scand J Gastroenterol. 1989;170:2-6.
  12. Ahuja V, Tandon RK. Inflammatory bowel disease in the Asia-Pacific area: A comparison with developed countries and regional differences. J Dig Dis. 2010;11(3):134-147. https://doi.org/10.1111/j.1751-2980.2010.00429.x
  13. Baumgart DC, Sandborn WJ. Inflammatory bowel disease: Clinical aspects and established and evolving therapies. Lancet. 2007;369(9573):1641-1657. https://doi.org/10.1016/S0140-6736(07)60751-X
  14. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13(9):R79. https://doi.org/10.1186/gb-2012-13-9-r79
  15. Tubbs AL, Liu B, Rogers TD, Sartor RB, Miao EA. Dietary salt exacerbates experimental colitis. J Immunol. 2017;199(3):1051-1059. https://doi.org/10.4049/jimmunol.1700356
  16. Hernandez AL, Kitz A, Wu C, Lowther DE, Rodriguez DM, Vudattu N, et al. Sodium chloride inhibits the suppressive function of FOXP3+ regulatory T cells. J Clin Invest. 2015; 125(11):4212-4222. https://doi.org/10.1172/JCI81151
  17. Wei Y, Lu C, Chen J, Cui G, Wang L, Yu T, et al. High salt diet stimulates gut Th17 response and exacerbates TNBS-induced colitis in mice. Oncotarget. 2017;8(1):70-82. https://doi.org/10.18632/oncotarget.13783
  18. Zhang WC, Zheng XJ, Du LJ, Sun JY, Shen ZX, Shi C, et al. High salt primes a specific activation state of macrophages, M(Na). Cell Res. 2015; 25(8):893-910. https://doi.org/10.1038/cr.2015.87
  19. Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015;519(7541):92-96. https://doi.org/10.1038/nature14232
  20. Viennois E, Merlin D, Gewirtz AT, Chassaing B. Dietary emulsifier-induced low-grade inflammation promotes colon carcinogenesis. Cancer Res. 2017;77(1):27-40. https://doi.org/10.1158/0008-5472.CAN-16-1359
  21. Cougnoux A, Dalmasso G, Martinez R, Buc E, Delmas J, Gibold L, et al. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut. 2014;63(12):1932-1942. https://doi.org/10.1136/gutjnl-2013-305257
  22. Chassaing B, Van de Wiele T, De Bodt J, Marzorati M, Gewirtz AT. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut. 2017;66(8):1414-1427. https://doi.org/10.1136/gutjnl-2016-313099
  23. Fearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol. 2011;6:479-507. https://doi.org/10.1146/annurev-pathol-011110-130235
  24. Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013; 13(11):759-771. https://doi.org/10.1038/nrc3611
  25. Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S, et al. IL-6 and STAT3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 2009;15(2):103-113. https://doi.org/10.1016/j.ccr.2009.01.001
  26. Zackular JP, Baxter NT, Iverson KD, Sadler WD, Petrosino JF, Chen GY, et al. The gut microbiome modulates colon tumorigenesis. MBio. 2013;4(6):e00692-00613.
  27. Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14(2):207-215. https://doi.org/10.1016/j.chom.2013.07.007
  28. Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012; 338(6103):120-123. https://doi.org/10.1126/science.1224820
  29. Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009; 15(9):1016-1022. https://doi.org/10.1038/nm.2015
  30. Haggar FA, Boushey RP. Colorectal cancer epidemiology: Incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 2009;22(4):191-197. https://doi.org/10.1055/s-0029-1242458
  31. Park Y, Lee J, Oh JH, Shin A, Kim J. Dietary patterns and colorectal cancer risk in a Korean population: A case-control study. Medicine (Baltimore). 2016;95(25):e3759. https://doi.org/10.1097/MD.0000000000003759
  32. Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, et al. Salt-responsive gut commensal modulates Th17 axis and disease. Nature. 2017;551(7682):585-589.
  33. Bernardini S, Tiezzi A, Laghezza Masci V, Ovidi E. Natural products for human health: An historical overview of the drug discovery approaches. Nat Prod Res. 2017;27:1-25.
  34. Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites. 2012;2(2):303-336. https://doi.org/10.3390/metabo2020303
  35. David B, Wolfender JL, Dias DA. The pharmaceutical industry and natural products: Historical status and new trends. Phytochem Rev. 2015;14(2):299-315. https://doi.org/10.1007/s11101-014-9367-z
  36. Scarpellini E, Ianiro G, Attili F, Bassanelli C, De Santis A, Gasbarrini A. The human gut microbiota and virome: Potential therapeutic implications. Dig Liver Dis. 2015;47(12):1007-1012. https://doi.org/10.1016/j.dld.2015.07.008
  37. Kuropatnicki AK, Szliszka E, Krol W. Historical aspects of propolis research in modern times. Evid Based Complement Alternat Med. 2013;2013:964149.
  38. Huang S, Zhang CP, Wang K, Li GQ, Hu FL. Recent advances in the chemical composition of propolis. Molecules. 2014;19(12):19610-19632. https://doi.org/10.3390/molecules191219610
  39. Nijveldt RJ, Van Nood E, Van Hoorn DE, Boelens PG, Van Norren K, van Leeuwen PA. Flavonoids: A review of probable mechanisms of action and potential applications. Am J Clin Nutr. 2001;74(4):418-425. https://doi.org/10.1093/ajcn/74.4.418
  40. Vezza T, Rodriguez-Nogales A, Algieri F, Utrilla MP, Rodriguez-Cabezas ME, Galvez J. Flavonoids in inflammatory bowel disease: A review. Nutrients. 2016;8(4):211. https://doi.org/10.3390/nu8040211
  41. Armutcu F, Akyol S, Ustunsoy S, Turan FF. Therapeutic potential of caffeic acid phenethyl ester and its anti-inflammatory and immunomodulatory effects (Review). Exp Ther Med. 2015;9(5):1582-1588. https://doi.org/10.3892/etm.2015.2346
  42. Ozturk G, Ginis Z, Akyol S, Erden G, Gurel A, Akyol O. The anticancer mechanism of caffeic acid phenethyl ester (CAPE): Review of melanomas, lung and prostate cancers. Eur Rev Med Pharmacol Sci. 2012;16(15):2064-2068.
  43. Anand David AV, Arulmoli R, Parasuraman S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn Rev. 2016;10(20):84-89. https://doi.org/10.4103/0973-7847.194044
  44. Sawicka D, Car H, Borawska MH, Niklinski J. The anticancer activity of propolis. Folia Histochem Cytobiol. 2012;50(1):25-37. https://doi.org/10.5603/FHC.2012.0004
  45. Wang K, Jin X, You M, Tian W, Le Leu RK, Topping DL, et al. Dietary propolis ameliorates dextran sulfate sodium-induced colitis and modulates the gut microbiota in rats fed a western diet. Nutrients. 2017;9(8):875 https://doi.org/10.3390/nu9080875
  46. Engen PA, Green SJ, Voigt RM, Forsyth CB, Keshavarzian A. The gastrointestinal microbiome: Alcohol effects on the composition of intestinal microbiota. Alcohol Res. 2015;37(2):223-236.
  47. Kaufmann B, Christen P. Recent extraction techniques for natural products: microwave-assisted extraction and pressurised solvent extraction. Phytochem Anal. 2002; 13(2):105-113. https://doi.org/10.1002/pca.631
  48. Adedara IA, Ajayi BO, Awogbindin IO, Farombi EO. Interactive effects of ethanol on ulcerative colitis and its associated testicular dysfunction in pubertal Balb/c mice. Alcohol. 2017;64:65-75. https://doi.org/10.1016/j.alcohol.2017.06.001
  49. Ferrier L, Berard F, Debrauwer L, Chabo C, Langella P, Bueno L, et al. Impairment of the intestinal barrier by ethanol involves enteric microflora and mast cell activation in rodents. Am J Pathol. 2006;168(4):1148-1154. https://doi.org/10.2353/ajpath.2006.050617
  50. Wang HJ, Zakhari S, Jung MK. Alcohol, inflammation, and gut-liver-brain interactions in tissue damage and disease development. World J Gastroenterol. 2010;16(11):1304-1313. https://doi.org/10.3748/wjg.v16.i11.1304
  51. Liangpunsakul S, Toh E, Ross RA, Heathers LE, Chandler K, Oshodi A, et al. Quantity of alcohol drinking positively correlates with serum levels of endotoxin and markers of monocyte activation. Sci Rep. 2017;7(1):4462. https://doi.org/10.1038/s41598-017-04669-7
  52. Wang L, Zeng B, Zhang X, Liao Z, Gu L, Liu Z, et al. The effect of green tea polyphenols on gut microbial diversity and fat deposition in C57BL/6J HFA mice. Food Func. 2016;7(12):4956-4966. https://doi.org/10.1039/C6FO01150K
  53. Brglez Mojzer E, Knez Hrncic M, Skerget M, Knez Z, Bren U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules. 2016;21(7):901.
  54. Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients. 2014;7(1):17-44. https://doi.org/10.3390/nu7010017
  55. Shim E, Ryu HJ, Hwang J, Kim SY, Chung EJ. Dietary sodium intake in young Korean adults and its relationship with eating frequency and taste preference. Nutr Res Pract. 2013;7(3):192-198. https://doi.org/10.4162/nrp.2013.7.3.192
  56. Jiang F, Meng D, Weng M, Zhu W, Wu W, Kasper D, et al. The symbiotic bacterial surface factor polysaccharide A on Bacteroides fragilis inhibits IL-$1{\beta}$-induced inflammation in human fetal enterocytes via toll receptors 2 and 4. PLoS One. 2017;12(3):e0172738. https://doi.org/10.1371/journal.pone.0172738
  57. Chang YC, Ching YH, Chiu CC, Liu JY, Hung SW, Huang WC, et al. TLR2 and interleukin-10 are involved in Bacteroides fragilismediated prevention of DSS-induced colitis in gnotobiotic mice. PLoS One. 2017;12(7):e0180025. https://doi.org/10.1371/journal.pone.0180025
  58. Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A. 2010;107(27):12204-12209. https://doi.org/10.1073/pnas.0909122107
  59. Lee KT, Kim SM, Chong MS. Epidemiological study on acute diarrheal disease of children and adolescents in the Jeju region using a multiplex-PCR. Korean J Clin Lab Sci. 2017;49(2):141-149. https://doi.org/10.15324/kjcls.2017.49.2.141
  60. Kim YH, Park H. Study on the anti-inflammatory activity and mechanism of medicinal plants used in the treatment of arthritis. Korean J Clin Lab Sci. 2016;48(3):176-182. https://doi.org/10.15324/kjcls.2016.48.3.176

Cited by

  1. Immunofluorescence Microscopic Evaluation of Tight Junctional Proteins during Enterotoxigenic Bacteroides fragilis (ETBF) Infection in Mice vol.24, pp.3, 2018, https://doi.org/10.15616/bsl.2018.24.3.275