DOI QR코드

DOI QR Code

Computational Numerical Analysis and Experimental Validation of the Response of Reinforced Concrete Structures under Internal Explosion

내부폭발 시 철근콘크리트 구조물 거동에 대한 전산수치해석과 실험적 검증

  • Received : 2017.12.07
  • Accepted : 2018.03.06
  • Published : 2018.03.31

Abstract

Field experiments as well as numerical analyses with finite element analysis codes are two valuable and complemental ways to understand the structural response under explosive blast load. However, there seems to be only limited information available about finite element analysis and experimental validation on the response of structural components under internal explosions. For complementary use of the two ways, the numerical analyses should be validated with field experiments by comparing their results. In this paper, a small-scaled reinforced concrete building with a room is employed for experimental investigations. An amount of TNT is detonated at the center of the room. Pressure at three different sites in the room, displacement of centers of two walls, and damage patterns of four walls are measured and compared to results from numerical analyses. The experimental results are much similar to the numerical analyses results. The finite element analysis code ANSYS AUTODYN is employed to numerically analyze both pressure distribution inside the room and response of walls subjected to blast pressure. The feasibility and validity of the numerical analysis on the reponses of structural components under internal explosions are discussed in terms of structural damage assessment, and evaluated as the same damage in the analysis and the experiments.

실험과 유한요소코드를 이용한 수치해석은 폭발 하중에 의한 구조거동을 이해하는 유용한 방법이다. 그러나 내부폭발에 의한 철근콘크리트 구조물 거동에 대한 유한요소해석 결과와 실험적 검증에 대한 자료는 극히 드물다. 이 논문에서는 내부폭발에 의한 철근콘크리트 구조물 거동을 수치해석과 실험적으로 연구하였다. 방 하나짜리 축소형 콘크리트 내력벽 건물 중심에서 TNT가 기폭되는 상황을 고려하였다. 내부 폭풍압 분포와 철근콘크리트 벽 거동 분석은 유한요소 해석 코드인 ANSYS AUTODYN을 사용하였다. 수치해석과 실험을 비교한 결과 방 내부 세 곳에서 측정한 폭풍압과 두 벽 중심의 변위, 네 벽의 파손형태가 유사하게 나타났다. 또한 내부폭발 시 구조부재 거동에 대한 수치해석의 타당성과 정당성을 구조적 피해평가 측면에서 논의한 결과, 해석과 실험에서 같은 파손으로 평가되었다.

Keywords

References

  1. M.R. Driels (2013), Weaponeering: Conventional Weapon System Effectiveness, American Institute of Aeronautics and Astronautics.
  2. J. Jestin, F. Ali, A.M.A. Zaidi, M.F.S. Koslan, M.Z. Othman (2014), "Mesh Sensitivity Study of Soil Barrier Subjected to Blast Loading: Numerical Methods Using AUTODYN 3D", Modern Applied Science, Vol. 8, No. 6, pp. 250-257.
  3. D.S. Cheng, C.W. Hung, S.J. Pi (2013), "Numerical Simulation of near-Field Explosion", Journal of Applied Science and Engineering, Vol. 16, No. 1, pp. 61-67.
  4. F. Togashi, J.D.Baum, E.Mestreau, R.Lohner, D.Sunshine (2010), "Numerical Simulation of Long-duration Blast Wave Evolution in Confined Facilities", Shock Waves, Vol. 20, pp. 409-424.
  5. S.G. Lee, H.S. Lee, J.S. Lee, Y.Y. Kim (2015), "Shock Response Analysis of Blast Hardened Bulkhead in Naval Ship under Internal Blast", 10th European LS-DYNA Conference, Wurzburg, Germany.
  6. A.L. Brundage, K.E. Metzinger, D.J. Vangoethem, S.W. Attaway (2007), "Model Validation of a Structure Subjected to Internal Blast Loading", Modal Analysis Conference 2007 (IMAC-XXV): a Conference and Exposition on Structural Dynamics, pp. 1931-1938.
  7. H. Yu, Z. Wang, Y. Yuan, W. Li (2015), "Numerical analysis of internal blast effects on underground tunnel in soils", Structure and Infrastructure Engineering, Vol. 12, No. 9, pp. 1090-1105.
  8. Ansys (2005), AUTODYN Theory Manual, Century Dynamics.
  9. H.S. Kim, H.S. Ahn (2014), "Erosion Criteria for the Progressive Collapse Analysis of Reinforcement Concrete Structure due to Blast Load", Journal of the Korea Concrete Institute, Vol. 26, No. 3, pp. 335-342. https://doi.org/10.4334/JKCI.2014.26.3.335
  10. G. Hu, J. Wu, L. Li (2016), "Advanced Concrete Model in Hydrocode to Simulate Concrete Structures under Blast Loading", Advances in Civil Engineering, pp. 289-301.
  11. D. Bogosian, J. Ferritto, Y. Shi (2002), "Measuring Uncertainty and Conservation in Simplified Blast Models", The 30th Explosive Safety Seminar, Atlanta, Georgia.
  12. US Army Corps of Engineers PDC-TR-06-08 (2008), "Single Degree of Freedom Structural Response Limits for Antiterrorism Design", U.S.ARMY Corps of Engineers Protective Design Center Technical Report.