DOI QR코드

DOI QR Code

Nanostructured Metal Organic Framework Modified Glassy Carbon Electrode as a High Efficient Non-Enzymatic Amperometric Sensor for Electrochemical Detection of H2O2

  • Naseri, Maryam (Department of Chemistry, Alzahra University) ;
  • Fotouhi, Lida (Department of Chemistry, Alzahra University) ;
  • Ehsani, Ali (Department of Chemistry, Faculty of Science, University of Qom)
  • Received : 2017.07.07
  • Accepted : 2018.01.22
  • Published : 2018.03.31

Abstract

Metal-organic frameworks have recently been considered very promising modifiers in electrochemical analysis due to their unique characteristics among which tunable pore sizes, crystalline ordered structures, large surface areas and chemical tenability are worth noting. In the present research, $Cu(btec)_{0.5}DMF$ was electrodeposited on the surface of glassy carbon electrode at room temperature under cathodic potential and was initially used as the active materials for the detection of $H_2O_2$. The cyclic voltammogram of $Cu(btec)_{0.5}DMF$ modified GC electrode shows distinct redox peaks potentials at +0.002 and +0.212 V in 0.1 M phosphate buffer solution (pH 6.5) corresponding to $Cu^{(II)}/Cu^{(I)}$ in $Cu(btec)_{0.5}DMF$. Acting as the electrode materials of a non-enzymatic $H_2O_2$ biosensor, the $Cu(btec)_{0.5}DMF$ brings about a promising electrocatalytic performance. The high electrocatalytic activity of the $Cu(btec)_{0.5}DMF$ modified GC electrode is demonstrated by the amperometric response towards $H_2O_2$ reduction with a wide linear range from $5{\mu}M$ to $8000{\mu}M$, a low detection limit of $0.865{\mu}M$, good stability and high selectivity at an applied potential of -0.2 V, which was higher than some $H_2O_2$ biosensors.

Keywords

References

  1. E. Zhou, Y. Zhang, Y. Li and X. He, Electroanal., 2014, 26(11), 2526-2533. https://doi.org/10.1002/elan.201400341
  2. J. Yang, H. Ye, F. Zhao and B. Zeng, ACS Appl. Mater. Interfaces, 2016, 8(31) 20407-20414. https://doi.org/10.1021/acsami.6b06436
  3. Q. Wang, Y. Yang, F. Gao, J. Ni, Y. Zhang and Z. Lin, ACS Appl. Mater. Interfaces, 2016, 8 (47), 32477-32487. https://doi.org/10.1021/acsami.6b11965
  4. Y. Wang, Y. Wu, J. Xie and X. Hu, Sens. Actuators B Chem., 2013, 177, 1161-1166. https://doi.org/10.1016/j.snb.2012.12.048
  5. Y. Wang, H. Ge, Y. Wu, G. Ye, H. Chen and X. Hu, Talanta, 2014, 129, 100-105. https://doi.org/10.1016/j.talanta.2014.05.014
  6. M.Q. Wang, Y. Zhang, S.J. Bao, Y.N. Yu and C. Ye, Electrochim. Acta, 2016, 190, 365-370. https://doi.org/10.1016/j.electacta.2015.12.199
  7. M. Naseri, L. Fotouhi and A. Ehsani, J. Colloid Interface Sci., 2016, 484, 314-319. https://doi.org/10.1016/j.jcis.2016.09.001
  8. P.K. Vabbina, A. Kaushik, N. Pokhrel, S. Bhansali and N. Pala, Biosens. Bioelectron., 2015, 63, 124-130. https://doi.org/10.1016/j.bios.2014.07.026
  9. R.S. Kumar, S.S. Kumar and M.A. Kulandainathan, Electrochem. Commun., 2012, 25, 70-73. https://doi.org/10.1016/j.elecom.2012.09.018
  10. E. Lavion, J. Electroanal. Chem., 1979, 101, 19. https://doi.org/10.1016/S0022-0728(79)80075-3
  11. D.M. Fernandes, C.M.A. Brett and A.M.V. Cavaleiro, J. Solid State Electrochem., 2011, 15(4), 811-819. https://doi.org/10.1007/s10008-010-1154-1
  12. D. Zhang, J. Zhang, R. Zhang, H. Shi, Y. Guo, X. Guo, S. Li and B. Yuan, Talanta, 2015, 144, 1176-1181. https://doi.org/10.1016/j.talanta.2015.07.091
  13. L. Yang, C. Xu, W. Ye and W. Liu, Sens. Actuators B, 2015, 215, 489-496. https://doi.org/10.1016/j.snb.2015.03.104
  14. Y. Zhang, X. Bo, C. Luhana, H. Wang, M. Li and L. Guo, Chem. Commun., 2013, 49(61), 6885-6887. https://doi.org/10.1039/c3cc43292k
  15. J. Yang, H. Ye, F. Zhao and B. Zeng, ACS Appl. Mater. Interfaces, 2016, 8(31), 20407-20414. https://doi.org/10.1021/acsami.6b06436
  16. C. Zhang, M. Wang, L. Liu and X. Yang, Electrochem. Commun., 2013, 33, 131-134. https://doi.org/10.1016/j.elecom.2013.04.026
  17. E. Zhou, Y. Zhang, Y. Li and X. He, Electroanalysis, 2014, 26, 2526-2533. https://doi.org/10.1002/elan.201400341
  18. Q. Wang, Y. Yang, F. Gao, J. Ni, Y. Zhang and Z. Lin, ACS Appl. Mater. Interfaces, 2016, 8(47), 32477-32487. https://doi.org/10.1021/acsami.6b11965
  19. S. Dong, J. Xi, Y. Wu, H. Liu, C. Fu, H. Liu and F. Xiao, Anal. Chim. Acta, 2015, 853, 200-206. https://doi.org/10.1016/j.aca.2014.08.004
  20. A. Uzunoglu, A.D. Scherbarth and L.A. Stanciu, Sens. Actuators B, 2015, 220, 968-976. https://doi.org/10.1016/j.snb.2015.06.033