DOI QR코드

DOI QR Code

The change of grain quality and starch assimilation of rice under future climate conditions according to RCP 8.5 scenario

RCP 8.5 시나리오에 따른 미래 기후조건에서 벼의 품질 및 전분 동화 특성 변화

  • Sang, Wan-Gyu (National Institute of Crop Science, Rural Development Administration) ;
  • Cho, Hyeoun-Suk (National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Jun-Hwan (National Institute of Crop Science, Rural Development Administration) ;
  • Shin, Pyong (National Institute of Crop Science, Rural Development Administration) ;
  • Baek, Jae-Kyeong (National Institute of Crop Science, Rural Development Administration) ;
  • Lee, Yun-Ho (National Institute of Crop Science, Rural Development Administration) ;
  • Cho, Jeong-Il (National Institute of Crop Science, Rural Development Administration) ;
  • Seo, Myung-Chul (National Institute of Crop Science, Rural Development Administration)
  • 상완규 (농촌진흥청 국립식량과학원) ;
  • 조현숙 (농촌진흥청 국립식량과학원) ;
  • 김준환 (농촌진흥청 국립식량과학원) ;
  • 신평 (농촌진흥청 국립식량과학원) ;
  • 백재경 (농촌진흥청 국립식량과학원) ;
  • 이윤호 (농촌진흥청 국립식량과학원) ;
  • 조정일 (농촌진흥청 국립식량과학원) ;
  • 서명철 (농촌진흥청 국립식량과학원)
  • Received : 2018.09.17
  • Accepted : 2018.11.20
  • Published : 2018.12.30

Abstract

The objective of this study was to analyze the impact of climate change on rice yield and quality. Experiments were conducted using SPAR(Soil-Plant-Atmosphere-Research) chambers, which was designed to create virtual future climate conditions, in the National Institute of Crop Science, Jeonju, Korea, in 2016. In the future climate conditions($+2.8^{\circ}C$ temp, 580 ppm $CO_2$) of year 2051~2060 according to RCP 8.5 scenario, elevated temperature and $CO_2$ accelerated the heading date by about five days than the present climate conditions, resulted in a high temperature environment during grain filling stage. Rice yield decreased sharply in the future climate conditions due to the high temperature induced poor ripening. And the spikelet numbers, ripening ratio, and 1000-grain weight of brown rice were significantly decreased compared to control. The rice grain quality was also decreased sharply, especially due to the increased immature grains. In the future climate conditions, expression of starch biosynthesis-related genes such as granule-bound starch synthase(GBSSI, GBSSII, SSIIa, SSIIb, SSIIIa), starch branching enzyme(BEIIb) and ADP-glucose pyrophosphorylase(AGPS1, AGPS2, AGPL2) were repressed in developing seeds, whereas starch degradation related genes such as ${\alpha}-amylase$(Amy1C, Amy3D, Amy3E) were induced. These results suggest that the reduction in yield and quality of rice in the future climate conditions is likely caused mainly by the poor grain filling by high temperature. Therefore, it is suggested to develop tolerant cultivars to high temperature during grain filling period and a new cropping system in order to ensure a high quality of rice in the future climate conditions.

본 연구는 기후변화에 따른 쌀 품질 저하 요인을 기상 환경과 종실 전분 대사 기능면에서 평가하기 위해 수행하였다. 본 연구를 위해 활용한 옥외환경조절시설(SPAR)은 대형 토양상에서 온도와 $CO_2$ 동시 처리가 가능한 시설로서 최대한 포장 수준에 가까운 조건에서 미래 기후에 대한 정밀한 환경영향평가를 가능하게 해준다. 2001~2010년 전주 지역 현재 기후 기준 RCP 8.5 시나리오에 따른 2051~2060년 가상 기후조건에서 직접 재배 시험을 한 결과 미래 기후 조건에서는 벼 생육 및 노화가 급격하게 촉진되어 출수기가 현재 대비 5일 이상 빨라지는 등 생육기간이 단축될 뿐 아니라 이로 인해 고온 등숙 환경에 노출될 위험성이 크게 높아지게 됨을 알 수 있었다. 이로 인해 벼 수량 뿐 아니라 품질 또한 크게 저하되었는데 미래에는 정상립 비율은 현저히 저하된 반면 불완전립 특히 미숙립이 크게 증가하는 결과를 보였다. 이러한 결과는 고온 등숙에 의한 전분 합성 관련 유전자들의 발현감소 및 분해 관련 유전자들의 발현 증가 등 종실 체내 전분 전류 및 축적 양상이 크게 변화하여 나타난 것이다. 따라서 향후 안정적인 고품질 쌀 생산을 위해서는 고온 등숙 내성 벼 품종 개발 및 등숙기 고온 회피를 위한 재배법 개발 등의 방향으로 기후변화 적응 대책 관련 연구가 진행되어야 할 것이다.

Keywords

NRGSBM_2018_v20n4_296_f0001.png 이미지

Fig. 1. A SPAR unit (A) and experimental condition(average temperature, air CO2 concentration) during the growth period of rice (B).

NRGSBM_2018_v20n4_296_f0002.png 이미지

Fig. 2. Yield components and grain yield at present and in the future climate conditions. Spikelets number (A), panicle number (B), ripening rate (C), 1000 grain weight (D), Yield (E), harvest index (F).

NRGSBM_2018_v20n4_296_f0003.png 이미지

Fig. 3. Physical properties of brown rice under present and future climate conditions. The ratio of perfect, immature, damaged, opaque, and etc. Grain quality was determined by a grain-gradeing machine, RN-300.

NRGSBM_2018_v20n4_296_f0004.png 이미지

Fig. 4. Expression of genes for starch metabolism at present and in the future climate conditions. Genes coding for ADP-glucose pyrophosphorylase (A), starch synthase (B) and α-amylase (C).

Table 1. List of starch metabolism-related genes used for RT-PCR gene expression analysis

NRGSBM_2018_v20n4_296_t0001.png 이미지

Table 2. Present and future climate conditions and heading date

NRGSBM_2018_v20n4_296_t0002.png 이미지

References

  1. Asaoka, M., K. Okuno, Y. Sugimoto, J. Kawakami, and H. Fuwa, 1984: Effect of environmental temperature during development of rice plants on some properties of endosperm starch. Starch 36, 189-193 https://doi.org/10.1002/star.19840360602
  2. Baker, J. T., and L. H. Jr. Allen, 1993: Effects of $CO_2$ and temperature on rice: a summary of five growing seasons. Journal of Agricultural Meteorology 48, 575-582 https://doi.org/10.2480/agrmet.48.575
  3. Chung, U. R., K. S. Cho, and B. W. Lee, 2006: Evaluation of site-specific potential for rice production in Korea under the changing climate. Korean Journal of Agricultural and Forest Meteorology 8, 229-241.
  4. Ebata, M., and T. Tashiro, 1973: Studies on white-belly rice kernel. 1. Varietal differences in the occurrence of white-belly kernels. Proceedings of the Crop Science Society of Japan 42, 370-376.
  5. FAO (Food and Agriculture Organization of the United Nations), 2004: Impact of climate change on agriculture in Asia and the Pacific. Twenty-seventh FAO Regional Conference for Asia and the Pacific. Beijing, China, 17-21.
  6. Kim, H. Y., M. Lieffering, K. Kobayashi, M. Okada, M. W. Mitchell, M. Gumpertz, 2003: Effects of free-air $CO_2$ enrichment and nitrogen supply on the yield of temperate paddy rice crops. Field Crops Research 83, 261-270. https://doi.org/10.1016/S0378-4290(03)00076-5
  7. Kim, H. Y., T. Horie, H. Nakagawa, and K. Wada, 1996a: Effects of elevated $CO_2$ concentration and high temperature on growth and yield of rice. I. The effect on development, dry matter production and some growth characters. Japanese Journal of Crop Science 65, 634-643. https://doi.org/10.1626/jcs.65.634
  8. Kim, H. Y., T. Horie, H. Nakagawa, and K. Wada, 1996b: Effects of elevated $CO_2$ concentration and high temperature on growth and yield of rice. II. The effect on yield and its components of Akihikari rice. Japanese Journal of Crop Science 65, 644-651. https://doi.org/10.1626/jcs.65.644
  9. Kwon, W. T., 2005: Current status and prospects of climate change. Planning and Policy 3, 6-18
  10. Matsui, T., K. Omasa, and T. Horie, 2001: The difference in sterility due to high temperatures during the flowering period among japonica-rice varieties. Plant Production Science 4, 90-93. https://doi.org/10.1626/pps.4.90
  11. Matsui, T., O. S. Namuco, L. H. Ziska, and T. Horie, 1997: Effect of high temperature and CO2 concentration on spikelet sterility in indica rice. Field Crops Research 51, 213-219. https://doi.org/10.1016/S0378-4290(96)03451-X
  12. Reddy, K. R., H. F. Hodges, J. J. Read, J. M. Mckinion, J. T. Baker, L. Tarpley, and V. R. Reddy, 2001: Soil-Plant-Atmosphere-Research (SPAR) Facility: A tool for plant research and modeling. Biotronics 30, 27-50.
  13. Sakai, H., K. Yagi, K. Kobayashi, and S. Kawashima, 2001: Rice carbon balance under elevated $CO_2$. New Phytologist 150, 241-249. https://doi.org/10.1046/j.1469-8137.2001.00105.x
  14. Satake, T., and S. Yoshida, 1978: High temperature-induced sterility in indica rices at flowering. Japanese Journal of Crop Science 47(1), 6-17. https://doi.org/10.1626/jcs.47.6
  15. Seneweera, S. P., and J. P. Conroy, 1997: Growth, grain yield and quality of rice (Oryza sativa L.) in response to elevated $CO_2$ and phosphorus nutrition. Soil Science and Plant Nutrition 43, 1131-1136. https://doi.org/10.1080/00380768.1997.11863730
  16. Shim, K. M., K. A. Roh, K. H. So, G. Y. Kim, H. C. Jeong, and D. B. Lee, 2010: Assessing impacts of global warming on rice growth and production in Korea. Journal of Climate Change Research 1(2), 121-131.
  17. Terao, T., S. Miura, T. Yanagihara, T. Hirose, N. Nagata, H. Tabuchi, H. Y. Kim, M. Lieffering, M. Masumi, and K. Kobayashi, 2005: Influence of free-air$CO_2$ enrichment (FACE) on the eating quality of rice. Journal of The Science of Food and Agriculture 85, 1861-1868. https://doi.org/10.1002/jsfa.2165
  18. Wolfe, D. W., M. D. Schwartz, A. N. Lakso, Y. Otsuki, R. M. Pool, and N. J. Shaulis, 2005: Climate change and shifts in spring phenology of three horticultural woody perennials in USA. International Journal of Biometeorology 49, 303-309. https://doi.org/10.1007/s00484-004-0248-9
  19. Yamakawa, H., 2011: Omics-based approach for cereal starch biosynthesis: Toward a determination of key factors for quality of rice grain affected by high temperature. Journal of Applied Glycoscience 58, 35-38. https://doi.org/10.5458/jag.jag.JAG-2010_019
  20. Yamakawa, H., T. Hirose, M. Kuroda, and T. Yamaguchi, 2007: Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiology 144, 258-277. https://doi.org/10.1104/pp.107.098665
  21. Yun, J. I., 2003: Predicting regional rice production in South Korea using spatial data and crop-growth modeling. Agriculture systems 77, 23-38 https://doi.org/10.1016/S0308-521X(02)00084-7
  22. Yun, S. H., and J. T. Lee, 2001: Climate change impacts on optimum ripening periods of rice plant and its countermeasure in rice cultivation. Korean Journal of Agricultural and Forest Meteorology 3(1), 55-70.
  23. Ziska, L. H., O. Namuco, T. Moya, and J. Quilang, 1997: Growth and yield response of field-grown tropical rice to increasing carbon dioxide and air temperature. Agronomy Journal 89, 45-53. https://doi.org/10.2134/agronj1997.00021962008900010007x