DOI QR코드

DOI QR Code

Effect of Meteorological Factors on Evapotranspiration Change of Cnidium officinale Makino

기상요인이 일천궁의 증발산량 변화에 미치는 영향

  • 서영진 (경상북도농업기술원 봉화약용작물연구소) ;
  • 남효훈 (경상북도농업기술원 봉화약용작물연구소) ;
  • 장원철 (경상북도농업기술원 봉화약용작물연구소) ;
  • 김종수 (경상북도농업기술원 유기농업연구소) ;
  • 이부용 (대구가톨릭대학교 환경과학과)
  • Received : 2018.09.17
  • Accepted : 2018.12.04
  • Published : 2018.12.30

Abstract

Evapotranspiration (ET) information is needed for many applications in agricultural and environmental resource management because crop yields, plant growth and physiological characteristics are primarily water limited. This study was conducted to evaluate the diurnal change of ET using electronic weighing lysimeter and to determine whether the ET of Cnidium officinale Makino could be manipulated through meteorological factors such as solar radiation, windy conditions and air temperature etc., Pot has a diameter of 35 cm and an height of 38 cm. A disturbed soil of sandy loam (coarse, mixed, mesic family of Dystric Fluventic Eutroudepts) within lysimeter has a mass of approximately 40.0 kg. In 2017, 10-minute recordings of data were used for measuring actual ET, and also evaluating a relationship between ET and meteorological factors during from 2 Aug. to 6 Aug. The maximum daily ET of Cnidium officinale was $44.04{\pm}3.949g$ per hour in lysimetric measurements. Diurnal changes of ET was highly correlated with solar radiation ($r^2=0.7778$) and followed by wind speed ($r^2=0.6400$). But on the other hand, air temperature was not consistent with ET ($r^2=0.2260$). This results imply that ET of Cnidium officinaele seems to be mainly governed by radiation energy in clear days, and approximately 40% of solar radiation is likely to be converted into ET. Therefore, weighing lysimeter can be used to accurately estimate actual ET and is expected to attract a great deal of attention to reliable application of water management in agriculture.

본 연구에서는 라이시미터를 이용하여 일천궁의 증발산량을 관측하였고, 그 자료를 분석하여 기상요소와 증발산량과의 관계를 조사하였다. 맑은 날이 지속된 4일간 라이시미터에서 관측된 증발산량은 일사량의 약 40%에 해당하는 것으로 관측되었으며, 증발산량 변화의 형태는 일출이 시작됨과 동시에 증가하였고 일몰과 함께 급격히 감소하여 일사량은 일천궁의 증발산량에 영향을 주는 중요한 인자로 나타났고 야간의 강한 풍속은 증발산량을 증가시켰으며, 일사량과 풍속이 증발산량 변화에 가장 큰 영향을 주는 요인이었다. $600W/m^2$ 이상의 일사량에서는 일천궁의 증발산량 증가가 없어 일천궁을 안정적으로 재배하기 위해서 잎 표면으로 입사되는 일사량의 조절이 필요한 것으로 조사되었다. 따라서 라이시미터는 야외에서 증발산량을 간단하면서도 정확하게 관측할 수 있는 방법임을 확인하였고, 추후 식물의 수분생리 및 적정 재배환경 구명에도 매우 유용할 것으로 사료된다.

Keywords

NRGSBM_2018_v20n4_366_f0001.png 이미지

Fig. 1. Diagram (a) and photo (b) of lysimeter for evapotranspiration measurements.

NRGSBM_2018_v20n4_366_f0002.png 이미지

Fig. 2. Daily changes of air temperature (a), wind speed (b) and solar radiation (c) during the experiment period.

NRGSBM_2018_v20n4_366_f0003.png 이미지

Fig. 3. Comparisons of evapotranspiration of Cnidium officinale Makino from lysimeter and air temperature during the experiment period.

NRGSBM_2018_v20n4_366_f0004.png 이미지

Fig. 4. Comparisons of evapotranspiration of Cnidium officinale Makino from lysimeter and wind speed during the experiment period.

NRGSBM_2018_v20n4_366_f0005.png 이미지

Fig. 5. Comparisons of evapotranspiration of Cnidium officinale Makino from lysimeter and solar radiation during the experiment period. a, b, c and d are peaks of solar radiation.

NRGSBM_2018_v20n4_366_f0006.png 이미지

Fig. 6. Relationship between evapotranspiration of Cnidium officinale Makino from lysimeter and air temperature.

NRGSBM_2018_v20n4_366_f0007.png 이미지

Fig. 7. Relationship between evapotranspiration of Cnidium officinale Makino from lysimeter and wind speed.

NRGSBM_2018_v20n4_366_f0008.png 이미지

Fig. 8. Relationship between evapotranspiration of Cnidium officinale Makino from lysimeter and solar radiation.

References

  1. Al-Kaisi, M., L. J. Brun, and J. W. Enz, 1989: Transpiration and evapotranspiration from maize as related to leaf area index. Agricultural and Forest Meteorology 48, 111-116. https://doi.org/10.1016/0168-1923(89)90010-5
  2. Bakhtiari, B., N. Ghahreman, A. M. Liaghat, and G. Hoogenboom, 2011: Evaluation of reference evapotranspiration models for a semiarid environment using lysimeter measurements. Journal of Agricultural Science Technology 13, 223-237.
  3. Colaizzi, P. D., S. R. Evett, T. A. Howell, and J. A. Tolk, 2006: Composition of five models to scale daily evapotranspiration from one time of day measurements. American Society of Agricultural and Biological Engineers 49(5), 1409-1417.
  4. Han, J. S., and B. Y. Lee, 2005: Measurement and analysis of free water evaporation at Haenam paddy field. Korean Journal of Agricultural and Forest Meteorology 7(1), 91-97.
  5. Hatfield, J. L., R. J. Reginato, and S. B. Idso, 1984: Evaluation of canopy temperature- evapotranspiration models over various crops. Agricultural and Forest Meteorology 32, 41-53. https://doi.org/10.1016/0168-1923(84)90027-3
  6. Hong, J. K., H. J. Kwon, J. H. Lim, Y. H. Byun, J. Lee, and J. Kim, 2009: Standardization of KoFlux eddy covariance data processing. Korean Journal of Agricultural and Forest Meteorology 11(1), 19-26. https://doi.org/10.5532/KJAFM.2009.11.1.019
  7. Kim, J. M., D. Son, P. Lee, K. J. Lee, H. Kim, and S. Y. Kim, 2003: Ethyl acetate soluble fraction of Cnidium officinale Makino inhibits neuronal cell death by reduction of excessive nitric oxide production in liopolysaccaride-treated rat hippocampal slice cultures and microglia cells. Journal of Pharmacological Science 92, 74-78. https://doi.org/10.1254/jphs.92.74
  8. Kwon, H. J., S. B. Park, M. S. Kang, J. I. Yoo, and R. Yuan, and J. Kim, 2007: Quality control and assurance of eddy covariance data at two KoFlux sited. Korean Journal of Agricultural and Forest Meteorology 9(4), 260-267. https://doi.org/10.5532/KJAFM.2007.9.4.260
  9. Kwon, H. J., J. H. Lee, Y. K. Lee, J. W. Lee, S. W. Jung, and J. Kim, 2009: Seasonal variations of evapotranspiration observed in a mixed forest in the Seolmacheon catchment. Korean Journal of Agricultural and Forest Meteorology 11(1), 39-47. https://doi.org/10.5532/KJAFM.2009.11.1.039
  10. Lee, B. Y., and S. Haginoya, 2011: The latent heat exchange on the ground. Journal of the Environmental Sciences 20(8), 1061-1068. https://doi.org/10.5322/JES.2011.20.8.1061
  11. Lee, B. Y., S. K. Yang, K. H. Kwon, and J. B. Kim, 2012: The effect of evapotranspiration by altitude and observation of lysimeter. Journal of the Environmental Sciences 21(6), 749-755. https://doi.org/10.5322/JES.2012.21.6.749
  12. Lee, G. S., S. W. Kim, S. Y. Hamm, and K. H. Lee, 2016: Computation of actual evapotranspiration using drone based remotely sensed information; preliminary test for a drought index. Journal of Environmental Science International 25(12), 1653-1660. https://doi.org/10.5322/JESI.2016.25.12.1653
  13. Lee, J. H., H. S. Choi, M. S. Chung, and M. S. Lee, 2002: Volatile flavor components and free radical scavenging activity of Cnidium officinale. Korean Journal of Food Science and Technology 34, 330-338.
  14. Lim, Y. J., K. Y. Byun, T. Y. Lee, and J. Kim, 2010: Evaluation of evapotranspiration estimation using Korea Land Data Assimilation system. Korean Journal of Agricultural and Forest Meteorology 12(4), 298-306. https://doi.org/10.5532/KJAFM.2010.12.4.298
  15. Marek, H. T., A. D. Schneider, T. A. Howell, and L. L. Ebeling, 1988: Design and construction of large weighing monolithic lysimeter. American Society of Agricultural and Biological Engineers 31(2), 477-484. https://doi.org/10.13031/2013.30734
  16. Martin, E. C., A. S. De Oliveira, A. D. Folta, E. J. Pegilow, and D. C. Slack, 2001: Development and testing of a small weighable lysimeter system to assess water use by shallow rooted crops. American Society of Agricultural and Biological Engineers 44(1), 71-78. https://doi.org/10.13031/2013.2309
  17. MAFRA (Ministry of Agriculture, Food and Rural Affairs), 2017: 2016 an actual output of crop for a special purpose : Annual Production Data of Medicinal Crops 86-91, Sejong, Ministry of Agriculture, Food and Rural Affairs
  18. Oh, Y. J., H. R. Seo, Y. M. Choi, and D. S. Jung, 2010: Evaluation of antioxidant activity of the extracts from the aerial parts of Cnidium officinale Makino. Korean Journal of Medicinal Crop Science 18(6), 373-378.
  19. Park, Y. M., 2011: Leaf temperature characteristics being affected by light regime. Journal of the Environmental Sciences 20(12), 1599-1605. https://doi.org/10.5322/JES.2011.20.12.1599
  20. Peters, A., T. Nehls, H. Schonsky, and G. Wessolek, 2014: Seperating precipitation and evapotranspiration from noise-a new filter routine for high resolution lysimeter data. Hydrology and Earth System Science 18, 1189-1198. https://doi.org/10.5194/hess-18-1189-2014
  21. Rana, G., and N. Katerji, 2000: Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review. European Journal of Agronomy 13(2), 125-153. https://doi.org/10.1016/S1161-0301(00)00070-8
  22. Schrader, F., W. Durner, J. Fank, S. Gebler, T. Putz, and M. Hannes, 2013: Estimating precipitation and actual evapotranspiration from precision lysimeter measurements. Procedia Environmental Science 19(12), 543-552. https://doi.org/10.1016/j.proenv.2013.06.061
  23. Steiner, J. L., T. A. Howell, and A. D. Schneider, 1989: lysimetric evaluation of daily potential evapotranspiration models for grain sorghum. Agronomy Journal 83(1), 240-247. https://doi.org/10.2134/agronj1991.00021962008300010055x
  24. Tyagi, N. K., D. K. Sharma, and S. K. Luthra, 2000: Determination of evapotranspiration and crop coefficients of rice and sunflower with lysimeter. Agricultural Water Management 45(1), 41-54. https://doi.org/10.1016/S0378-3774(99)00071-2
  25. Yang, G. J., R. L. Pu, C. J. Zhao, and X. Z. Xue, 2014: Estimating high spatiotemporal resolution evapotranspiration over a winter wheat field using an IKONOS image based compcomplem relationship and lysimeter observations. Agricultural Water Management 133, 34-43. https://doi.org/10.1016/j.agwat.2013.10.018
  26. Yi, E. J., 2004: Control of citrus blue mold and chili pepper anthracnose by ligustilide and antifungal compound from Cnidium officinale Makino. Master Thesis, Seoul National University, Seoul.
  27. Yoo, B. H., K. J. Lee, B. W. Lee, and K. S. Kim, 2017: Production and analysis of digital climate maps of evapotranspiration using gridded climate scenario data in Koran Peninsula. Korean Journal of Agricultural and Forest Meteorology 19(2), 62-72. https://doi.org/10.5532/KJAFM.2017.19.2.62
  28. Yun, S. K., S. O. Hur, S. H. Kim, S. J. Park, J. B. Kim, and I. M. Choi, 2009: Prediction of evapotranspiration from grape vein in Suwon with the FAO Penman-Monteith equation. Korean Journal of Agricultural and Forest Meteorology 11(3), 111-117. https://doi.org/10.5532/KJAFM.2009.11.3.111