DOI QR코드

DOI QR Code

A Study on the Use of GIS-based Time Series Spatial Data for Streamflow Depletion Assessment

하천 건천화 평가를 위한 GIS 기반의 시계열 공간자료 활용에 관한 연구

  • YOO, Jae-Hyun (Dept. of Geoinformatic Engineering Inha University) ;
  • KIM, Kye-Hyun (Dept. of Geoinformatic Engineering Inha University) ;
  • PARK, Yong-Gil (Dept. of Geoinformatic Engineering Inha University) ;
  • LEE, Gi-Hun (Dept. of Geoinformatic Engineering Inha University) ;
  • KIM, Seong-Joon (School of civil and Environmental Engineering Konkuk university) ;
  • JUNG, Chung-Gil (Dept. of civil and Environmental and plant Engineering Konkuk university)
  • 유재현 (인하대학교 공간정보공학과) ;
  • 김계현 (인하대학교 공간정보공학과) ;
  • 박용길 (인하대학교 공간정보공학과) ;
  • 이기훈 (인하대학교 공간정보공학과) ;
  • 김성준 (건국대학교 사회환경공학부) ;
  • 정충길 (건국대학교 사회환경플랜트공학과)
  • Received : 2018.10.05
  • Accepted : 2018.11.21
  • Published : 2018.12.31

Abstract

The rapid urbanization had led to a distortion of natural hydrological cycle system. The change in hydrological cycle structure is causing streamflow depletion, changing the existing use tendency of water resources. To manage such phenomena, a streamflow depletion impact assessment technology to forecast depletion is required. For performing such technology, it is indispensable to build GIS-based spatial data as fundamental data, but there is a shortage of related research. Therefore, this study was conducted to use the use of GIS-based time series spatial data for streamflow depletion assessment. For this study, GIS data over decades of changes on a national scale were constructed, targeting 6 streamflow depletion impact factors (weather, soil depth, forest density, road network, groundwater usage and landuse) and the data were used as the basic data for the operation of continuous hydrologic model. Focusing on these impact factors, the causes for streamflow depletion were analyzed depending on time series. Then, using distributed continuous hydrologic model based DrySAT, annual runoff of each streamflow depletion impact factor was measured and depletion assessment was conducted. As a result, the default value of annual runoff was measured at 977.9mm under the given weather condition without considering other factors. When considering the decrease in soil depth, the increase in forest density, road development, and groundwater usage, along with the change in land use and development, and annual runoff were measured at 1,003.5mm, 942.1mm, 961.9mm, 915.5mm, and 1003.7mm, respectively. The results showed that the major causes of the streaflow depletion were lowered soil depth to decrease the infiltration volume and surface runoff thereby decreasing streamflow; the increased forest density to decrease surface runoff; the increased road network to decrease the sub-surface flow; the increased groundwater use from undiscriminated development to decrease the baseflow; increased impervious areas to increase surface runoff. Also, each standard watershed depending on the grade of depletion was indicated, based on the definition of streamflow depletion and the range of grade. Considering the weather, the decrease in soil depth, the increase in forest density, road development, and groundwater usage, and the change in land use and development, the grade of depletion were 2.1, 2.2, 2.5, 2.3, 2.8, 2.2, respectively. Among the five streamflow depletion impact factors except rainfall condition, the change in groundwater usage showed the biggest influence on depletion, followed by the change in forest density, road construction, land use, and soil depth. In conclusion, it is anticipated that a national streamflow depletion assessment system to be develop in the future would provide customized depletion management and prevention plans based on the system assessment results regarding future data changes of the six streamflow depletion impact factors and the prospect of depletion progress.

급격한 도시화를 겪으면서 자연적인 물순환 체계의 왜곡을 초래하였다. 이러한 물순환 구조의 변화는 기존 수자원 이용 경향을 변화시키며 하천 건천화 현상을 유발하고 있다. 이를 관리하기 위해 건천화 평가 및 예측이 가능한 하천 건천화 영향 평가 기술이 필요하다. 하천 건천화 영향평가 기술 수행을 위해서는 기초자료로써 GIS 기반의 공간자료 구축이 필수적이나, 관련 연구는 미흡한 실정이다. 따라서 본 연구에서는 하천 건천화 평가를 위한 GIS 기반의 시계열 공간자료 활용에 대한 연구를 수행하였다. 이에 6개 하천 건천화 영향요소(기상, 토심, 산림밀도 및 높이, 도로망, 지하수 이용량, 토지이용)을 대상으로, 과거 수십년 간의 변화과정을 전국 단위 GIS 자료로 구축하여 연속수문모형 운용에 대한 기초자료로 활용하였다. 이러한 영향요소를 대상으로 시계열에 따라 하천 건천화 원인을 분석하고 해석할 수 있는 분포형 연속수문모형 기반의 DrySAT을 활용하여 하천 건천화 영향요소별 연유출량 및 건천화 평가를 수행하였다. 그 결과, 다른 요소들은 고려하지 않고 주어진 기상 조건하에 연유출량은 기본값 977.9mm로 산출되었다. 반면, 토심 감소, 산림 높이 증가, 도로 개발 증가, 지하수이용량 증가, 토지이용 개발변화를 고려하였을 때의 연평균 유출량은 각각 1,003.5mm, 942.1mm, 961.9mm, 915.5mm, 1003.7mm로 산출되었다. 산출된 결과는 하천건천화의 주요 원인으로서 지표유출량을 증가시켜 하천유량을 감소시키는 토심의 감소, 지표유출량을 감소시키는 산림 밀도의 증가, 지표하유출량을 감소시키는 도로의 증가, 기저유출량을 감소시키는 무분별한 지하수 개발과 지하수이용량의 증가, 지표유출량을 증가시키는 불투수지역의 증가를 들 수 있다. 또한, 하천 건천화 정의 및 등급 범위를 통해서 건천화 등급에 따라 표준유역별로 나타내었으며, 기상, 토심 감소 고려, 산림 높이 증가, 도로 개발 증가, 지하수이용량 증가, 토지이용 개발변화를 고려하였을 때의 건천화 등급은 각각 2.1, 2.2, 2.5, 2.3, 2.8, 2.2로 나타났다. 기본값인 강우조건을 제외한 5개 하천 건천화 영향요소에 대한 건천화 영향순위는 지하수 이용량 변화에 대한 건천화 영향이 제일 컸으며, 산림 밀도 변화, 도로 건설 변화, 토지이용 변화 및 토심 변화 순으로 나타났다. 향후 전국 하천 건천화 평가시스템 개발을 통해 6개 하천 건천화 영향요소에 대한 미래 자료 변화 및 이에 대한 건천화의 진행전망 등 시스템에 의한 평가결과를 토대로 맞춤형 하천 건천 관리 및 방지 방안을 제공할 수 있을 것으로 판단된다.

Keywords

References

  1. Barnes, K.B., J.M. Morgan III and M.C. Roberge. 2001. Impervious surfaces and the quality of natural and built environments. Baltimore : Department of Geography and Environmental Planning, Towson University.
  2. Booth, D. B., D. Hartley and R. Jackson. 2002. Forest cover, impervious‐surface area, and the mitigation of stormwater impacts, Journal of the American Water Resources Association 38(3), pp. 835-845. https://doi.org/10.1111/j.1752-1688.2002.tb01000.x
  3. Jeon, S.M., J.H. Park and C.G. Park. 2012. Application of technique for evaluating streamflow depletion in the urbanized small and medium watershed. Crisisonomy 8(6):67-81.
  4. Jung, K.S., H.S. Lee, J.Y. Kim and S.M. Pil. 2003. Analysis of drying streamflows characteristics using a GIS. Korea Water Resources Association 36(6):1083 -1095. https://doi.org/10.3741/JKWRA.2003.36.6.1083
  5. Kim, K.H., J.Y. Park and J.M. Oh. 2005. Analysing the causes of drying streamflow in Kyunan-Cheon. Korean Society On Water Environment-Korean Society of Water & Wastewater Conference. pp.637 -638.
  6. Gyonggi Research Institute (GRI). 2003. A study on the prevention of drying streamflows in Kyonggi-Do.
  7. Lee, W.S. 2008. An essay on streamflows drying. Korean Water Resources Association 41(11):56-60.
  8. Ministry of Land. Transport and Maritime Affairs of Korea (MLTM). 2009. Study on evaluation and improvement of streamflows drying.
  9. Ministry of Science and Technology of Korea (MST). 2007. Rehabilitation of the hydrologic cycle in the Anyancheon watershed.
  10. Ministry of Science and Technology of Korea (MST). 2003. Technology of dustainable durfacewater development.
  11. National Assembly Research Service of Korea (NARS). 2010. Countermeasures for water cycle restoration to prevent urban streamflows drying.
  12. Yi, C.S., S.A. Choi, H.S. Kim and S.M. Pil. 2004. Cause analysis on dry of streamflow flow for the Ui-Cheon. Korea Water Resources Association Conference. pp.753-758.
  13. Yoo, J.H., K.H. Kim and S.J. Kim. 2014. A study on integrated DB building for GIS based streamflow depletion impact assessment. Proceedings of Korean Association of Geographic Information Studies. pp.270-271.