DOI QR코드

DOI QR Code

The Uranium Removal in Groundwater by Using the Bamboo Charcoal as the Adsorbent

대나무 활성탄을 흡착제로 활용한 오염지하수 내 우라늄 제거

  • Lee, Jinkyun (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Kim, Taehyoung (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Lee, Minhee (Department of Earth Environmental Sciences, Pukyong National University)
  • 이진균 (부경대학교 지구환경과학과) ;
  • 김태형 (부경대학교 지구환경과학과) ;
  • 이민희 (부경대학교 지구환경과학과)
  • Received : 2018.12.15
  • Accepted : 2018.12.19
  • Published : 2018.12.28

Abstract

Batch sorption experiments were performed to remove the uranium (U) in groundwater by using the bamboo charcoal. For 2 kinds of commercialized bamboo charcoals in Korea, the U removal efficiency at various initial U concentrations in water were investigated and the optimal sorption conditions to apply the bamboo charcoal were determined by the batch experiments with replicate at different pH, temperature, and reaction time conditions. From results of adsorption batch experiments, the U removal efficiency of the bamboo charcoal ranged from 70 % to 97 % and the U removal efficiency for the genuine groundwater of which U concentration was 0.14 mg/L was 84 %. The high U removal efficiency of the bamboo charcoal maintained in a relatively wide range of temperatures ($10{\sim}20^{\circ}C$) and pHs (5 ~ 9), supporting that the usage of the bamboo charcoal is available for U contaminated groundwater without additional treatment process in field. Two typical sorption isotherms were plotted by using the experimental results and the bamboo charcoal for U complied with the Langmuir adsorption property. The maximum adsorption concentration ($q_m:mg/g$) of A type and C type bamboo charcoal in the Langmuir isotherm model were 200.0 mg/g and 16.9 mg/g, respectively. When 2 g of bamboo charcoal was added into 100 mL of U contaminated groundwater (0.04 ~ 10.8 mg/L of initial U concentration), the separation factor ($R_L$) and the surface coverage (${\theta}$) maintained lower than 1, suggesting that the U contaminated groundwater can be cleaned up with a small amount of the bamboo charcoal.

대나무 활성탄을 흡착제로 사용하여 우라늄으로 오염된 지하수를 정화하는 흡착 배치실험을 수행하였다. 국내에서 판매되는 두 종류의 대나무 활성탄을 사용하여 다양한 우라늄 농도를 가지는 인공오염수를 대상으로 활성탄 투입량에 따른 제거효율 변화를 측정하였다. 인공오염수의 다양한 pH, 온도, 흡착 시간 조건에서 흡착실험을 반복하여, 최적의 제거효율을 나타내는 대나무 활성탄의 적용 조건을 결정하였다. 실험 결과, 인공오염수에 대한 대나무 활성탄의 우라늄 제거효율은 70 ~ 97 %를 나타내었으며, 우라늄 농도가 0.14 mg/L인 실제 우라늄 오염지하수에 대한 제거효율도 84 %로 매우 높았다. 오염수의 온도의 경우 $10{\sim}20^{\circ}C$ 범위, pH는 5 ~ 9 범위에서 우라늄 제거효율 변화가 크지 않아, 현장에서 별도의 추가 처리 없이 오염지하수에 적용할 수 있을 것으로 판단되었다. 흡착실험 결과로부터 대표적인 흡착등온선을 도시한 결과, 우라늄에 대하여 대나무 활성탄은 Langmuir 흡착특성을 나타내었으며, A type과 C type 대나무 활성탄의 최대흡착농도($q_m:mg/g$)값은 각각 200.0 mg/g와 16.9 mg/g으로 높게 나타났다. 오염수 100 mL에 대나무 활성탄 2 g(2 wt%)을 첨가한 경우, 초기 우라늄 농도가 0.04 ~ 10.8 mg/L 범위에서 분리상수 값(separation factor: $R_L$)과 표면흡착률 값(surface coverage: ${\theta}$)이 1 이하로 낮게 유지되어, 다양한 우라늄 농도 범위를 가지는 오염지하수에 대하여 적은 양의 대나무 활성탄으로 효과적으로 정화할 수 있을 것으로 판단되었다.

Keywords

JOHGB2_2018_v51n6_531_f0001.png 이미지

Fig. 1. Status of groundwater quality by the Piper diagram.

JOHGB2_2018_v51n6_531_f0002.png 이미지

Fig. 2. FE-SEM images of the A type and C type bamboo charcoal particles.

JOHGB2_2018_v51n6_531_f0003.png 이미지

Fig. 3. The U removal efficiencies of bamboo charcoals at different initial U concentration in water (Error bars represent the standard deviation from triple measurements.).

JOHGB2_2018_v51n6_531_f0004.png 이미지

Fig. 4. The U removal efficiencies of bamboo charcoals with different conditions ((a) and (c) for A type; (b) and (d) for C type)(Error bars represent the standard deviation from triple measurements.).

JOHGB2_2018_v51n6_531_f0005.png 이미지

Fig. 5. The U removal efficiency for the genuine groundwater with 0.14 mg/L of initial U concentration(Error bars represent the standard deviation from triple measurements.).

JOHGB2_2018_v51n6_531_f0006.png 이미지

Fig. 6. Two adsorption isotherm curves fitting for the U adsorption of bamboo charcoals.

JOHGB2_2018_v51n6_531_f0007.png 이미지

Fig. 7. The plots of separation factor (RL) and surface coverage (θ ) for the U adsorption by bamboo charcoals vs. initial U concentration in water.

Table 1. Properties of groundwater used in the experiment

JOHGB2_2018_v51n6_531_t0001.png 이미지

Table 2. Langmuir and Freundlich isotherm parameters for the U adsorption on bamboo charcoal

JOHGB2_2018_v51n6_531_t0002.png 이미지

References

  1. Adachi, K., Kajino, M., Zaizen, Y. and Igarashi, Y. (2013) Emission of spherical cesium bearing particles from an early stage of the Fukushima unclear accident. Sci. Rep., v.3, p.2554. https://doi.org/10.1038/srep02554
  2. Ahn, J. and Lee, M. (2018) Sorption efficiency of the bamboo charcoal to remove the cesium in the contaminated water system. Econ. Environ. Geol., v.51. no.2, p.87-97. https://doi.org/10.9719/EEG.2018.51.2.87
  3. Baik, M.H., Cho, W.J. and Hahn, P.S. (2004) A parametric study on the sorption of U(VI) onto granite. J. Kor. Rad. Waste Soc., v.2. no.2, p.135-143.
  4. Baik, M.H. and Cho, W.J. (2006) An experimental study on the sorption of uranium (VI) onto a bentonite colloid. J. Kor. Rad. Waste Soc., v.4. no.3, p.235-243.
  5. Baik, M.H., Park, C.K. and Cho, W.J. (2007) Migration and retardation properties of uranium through a rock fracture in a reducing environment. J. Kor. Rad. Waste Soc., v.5. no.2, p.113-122.
  6. Brown, J., Hammond, D. and Wilkins, B.T. (2008) Handbook for Assessing the Impact of a Radiological Incident on Levels of Radioactivity in Drinking Water and Risks to Operatives at Water Treatment Works: Supporting Scientific Report. UK Health Protection Agency, Radiation Protection Division, pp. 91.
  7. Buesseler, K.O. (2014) Fukushima and ocean radioactivity. Oceanography, v.27, p.92-105.
  8. Chon, C.M., Moon, H.S., Choi, S.K. and Woo, N.C. (1997) A study on soil clay minerals and the distribution of heavy metals in soils derived from black shale and black slate in dukpyoung area. Econ. Environ. Geol., v.30. no.6, p.567-586.
  9. Clark, I. (2015) Groundwater Geochemistry and Isotopes. CRC Press, pp.456.
  10. Ding, D., Zhang, Z., Chen, R. and Cai, T. (2017) Selective removal of cesium by ammonium molybdophosphatepolyacrylonitrile bead and membrane. J. Hazard. Mater., v.324, p.753-761. https://doi.org/10.1016/j.jhazmat.2016.11.054
  11. Ding, S., Yang, Y., Li, C., Huang, H. and Hou, L. (2016) The effects of organic fouling on the removal of radionuclides by reverse osmosis membranes. Water Res., v.95, p.174-184. https://doi.org/10.1016/j.watres.2016.03.028
  12. Dushenkov, S., Vasudev, D., Kapulnik, Y., Gleba, D., Fleisher, D., Ting, K.C. and Ensley, B. (1997) Removal of uranium from water using terrestrial plants. Environ. Sci. Technol., v.31, p.3468-3474. https://doi.org/10.1021/es970220l
  13. Han, Y. and Lee, M. (2015) Evaluation of rhizofiltration for uranium rermoval with calculation of the removal capacity of Raphanus sativus L. J. Soil Groundw. Environ., v.20, p.43-52. https://doi.org/10.7857/JSGE.2015.20.7.043
  14. Ho, Y.S., Huang, C.T. and Huang, H.W. (2002) Equilibrium sorption isotherm for metal ions on tree fern. Process Biochem., v.37, p.1421-1430. https://doi.org/10.1016/S0032-9592(02)00036-5
  15. Jung, H. (2016) Safety regulation for the storae of SF in Korea. The 3rd International Symposium on safety Improvement & Stakeholder Confidence in RWM (SaRam), Seoul, Korea, pp. 21.
  16. Khandaker, S., Kuba, T., Kamida, S. and Uchikawa, Y. (2017) Adsorption of cesium from aqueous solution by raw and concentrated nitric acid-modified bamboo charcoal. J. Environ. Chem. Eng., v.5, p.1456-1464. https://doi.org/10.1016/j.jece.2017.02.014
  17. Khandaker, S., Toyohara, Y., Kamida, S. and Kuba, T. (2018) Adsorptive removal of cesium from aqueous solution using oxidized bamboo charcoal. Water Resour. Ind., v.19, p.35-46. https://doi.org/10.1016/j.wri.2018.01.001
  18. KHNP (Korea Hydro & Nuclear Power Co.) (2016) 2015 Nuclear Power Generation. Annual Report.
  19. Kim, O.J., Min, K.D. and Kim, K.H. (1986) Geology and mineral resources of the Okchon zone-The boundary between the Okchon and Choson systems in the south of Iechon, and the geology in its vicinity. Jour. Korean Inst. Mining Geol., v. 19, no. 3, p.225-230.
  20. Lalhruaitluanga, H., Jayaram, K., Prasad, M.N.V., Kumar, K.K. (2010) Lead (II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (bamboo) - A comparative study. J. Hazard. Mater., v.175, p.311-318. https://doi.org/10.1016/j.jhazmat.2009.10.005
  21. Langmuir, D. (1997) Aqueous Environmental Geochemistry. Prentice Hall, pp. 600.
  22. Lee, K.Y., Kim, K.W., Park, M., Kim, J., Oh, M., Lee, E.H., Chung, D.Y. and Moon, J.K. (2016) Novel application of nanozeolite for radioactive cesium removal from high-salt wastewater. Water Res., v.95, p.134-141. https://doi.org/10.1016/j.watres.2016.02.052
  23. Lee, M.S. and Chon, H.T. (1980) Geochemical correlations between uranium and other components in U-bearing formation of Okchon belt. Jour. Korean Inst. Mining Geol., v.13, no.4, p.241-246.
  24. Lee, S.Y., Baik, M.H. and Lee, J.K. (2009) Artificial weathering of biotite and uranium sorption characteristics. J. Kor. Rad. Waste Soc., v.7. no.1, p.33-38.
  25. Missana, T., Garci a-Gutierrez, M. and Alonso, U. (2004) Kinetics and irreversibility of cesium and uranium sorption onto bentonite colloids in a deep granitic environment. Appl. Clay Sci., v.26, p.137-150. https://doi.org/10.1016/j.clay.2003.09.008
  26. MOE (Ministry of Environment) (2018) Drinking water quality testing methods and standards. Legislation.
  27. MOE (Ministry of Environment) (2015) Natural radioactive materials in groundwater, NIER-GP2014-146, Report (ISBN 978-89-6558-257-1), pp.17.
  28. Montana, M., Camacho, A., Serrano, I., Devesa, R., Matia, L. and Valles, I. (2013) Removal of radionuclides in drinking water by membrane treatment using ultrafiltration, reverse osmosis and electrodialysis reversal. J. Environ. Radioact., v.125, p.86-92. https://doi.org/10.1016/j.jenvrad.2013.01.010
  29. Saling, J.H. and Fentiman, A.W. (2001), Radioactive waste management, 2nd ed., Taylor & Francks, NY, pp. 352.
  30. Wang, X.L., Li, Y., Huang, J., Zhou, Y.Z., Li, B.L. and Liu, D.B. (2019) Efficiency and mechanism of adsorption of low concentration uranium in water by extracellular polymeric substances. J. Environ. Radioact., v.197, p.81-89. https://doi.org/10.1016/j.jenvrad.2018.12.002
  31. Yin, C.Y., Aroua, M.K. and Daud, W.M.A.W. (2007) Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions. Sep. Purif. Technol., v.52, no.3, p.403-415. https://doi.org/10.1016/j.seppur.2006.06.009
  32. Zheng, H., Wang, Y., Zheng, Y., Zhang, H., Liang, S. and Long, M.I. (2008) Equilibrium, kinetic and thermodynamic studies on the sorption of 4-hydroxyphenol on Cr-bentonite. Chem. Eng. J., v.143, p.117-123. https://doi.org/10.1016/j.cej.2007.12.022