DOI QR코드

DOI QR Code

Self-folding of Multi-layered and Compartmented Hydrogel Designed for 4D Mask Pack

다층 및 다중구획 하이드로젤 제조 및 4D 마스크팩 적용을 위한 자가접힘 특성 분석

  • Lim, Jun Woo (Dept. of Chemical Engineering, Soongsil University) ;
  • Jung, Naseul (Dept. of Chemical Engineering, Soongsil University) ;
  • Shin, Sung Gyu (Dept. of Chemical Engineering, Soongsil University) ;
  • Kwon, Hye Jin (Dept. of Chemical Engineering, Soongsil University) ;
  • Jeong, Jae Hyun (Dept. of Chemical Engineering, Soongsil University)
  • Received : 2018.09.03
  • Accepted : 2018.11.12
  • Published : 2018.12.30

Abstract

The multi-layered and compartmented hydrogel was designed to examine the self-transforming for developing a 4D mask pack. The hydrogel consisting of two layers with different expansion ratios were fabricated to have specific curvature by self-folding assembly. In addition, the hydrogel compartmented with three different geometries was designed by varying of expansion ratios. The compartmented hydrogel with 0.03, 0. $0,03mm^{-1}$ of curvatures at room temperature was self-transformed with 1.33, 0, $1.33mm^{-1}$of curvatures at $37^{\circ}C$, enhancing the facial adhesion. Overall, this new strategy to prepare the multi-layered and compartmented hydrogel would be actively used in developing the 4D mask pack to self-transform by each facial curvature.

다층 및 다중구획 하이드로젤을 설계하여 4D 마스크팩 적용을 위한 자가접힘 특성분석을 수행하였다. 온도민감성 분자를 하이드로젤에 도입하여 팽창비가 다른 두 층으로 구성된 하이드로젤을 제조하였다. 나아가 팽창비 차이를 조절하여 자가접힘 정도가 다른 삼중구획 하이드로젤을 설계하였다. 상온에서 각각 0.03, 0, $0.03mm^{-1}$의 곡률을 갖는 구획화된 하이드로젤은 피부 온도에서 1.33, 0, $1.33mm^{-1}$의 곡률로 변화하여, 안면 밀착성이 현저히 높아지는 것을 확인하였다. 다층 및 다중구획 하이드로젤 제조 기술은 안면의 부위별 굴곡모양에 따라 자가변환이 가능한 맞춤형 4D 마스크팩 구현에 활용될 수 있다.

Keywords

HJPHBN_2018_v44n4_399_f0001.png 이미지

Figure 1. (A) Schematic description of a 4D mask pack integrated with multi-layered and compartmented hydrogel. (B) Preparation flow diagram of multi-layered and compartmented hydrogel by photolithography technique. (C) Self-folding assembly of a hydrogel depending on the temperature.

HJPHBN_2018_v44n4_399_f0002.png 이미지

Figure 2. Effects of AAm and NIPAM concentration on the expansion ratio of the hydrogel.

HJPHBN_2018_v44n4_399_f0003.png 이미지

Figure 3. Effects of AAm and MBA concentration on the expansion ratio of the hydrogel.

HJPHBN_2018_v44n4_399_f0004.png 이미지

Figure 4. (A) Curvatures of the multi-layered hydrogels estimated by a mathematical model developed for the curvature of a heat-induced bimetallic strip. (B, C) a self-folded hydrogel with different curvatures depending on the temperature (B, C). (D) hysteresis curve of curvatures in each compartmented hydrogel (wing and base).

HJPHBN_2018_v44n4_399_f0005.png 이미지

Figure 5. Enhancing the facial adhesion of the hydrogel mask introduced to the skin temperature by self-transformation.

References

  1. B. Y. Choi and J. D. Kim, A study on perceptions and use of sheet type facial mask, J. Kor. Soc. Cosm., 6(2), 163 (2016).
  2. A. Lohani, A. Verma, H. Joshi, N. Yadav, and N. Karki, Nanotechnology-based cosmeceuticals, ISRN Dermatol., 2014, 843687 (2014).
  3. S. M. Jeon, M. H. Choi, Y. J. Lee, and H. J. Shin, Anti-wrinkle effect of facial mask pack containing oinon(alliumcepa)skin extracts, KSBB J., 28(6), 387 (2013). https://doi.org/10.7841/ksbbj.2013.28.6.387
  4. A. Quattrone, A. Czajka, and S. Sibilla, Thermosensitive hydrogel mask significantly improves skin moisture and skin tone; bilateral clinical trial, Cosmetics, 4(2), 17 (2017). https://doi.org/10.3390/cosmetics4020017
  5. Y. K. Choi, C. Y. Son, and B. J. Ha, Preparation and physical properties of porous mask sheet prepared by dispersion system of gases in liquids, Kor. J. Aesthet. Cosmetol., 11(5), 903 (2013).
  6. Y. R. Kwon, K. Y. Lee, S. J. Byun, D. H. Lee, and J. R. Huh, Cosmetics science, 1, 114, hyungseul, Korea (2010).
  7. J. H. Jeong, V. Chan, C. Cha, P. Zorlutuna, C. Dyck, K. J. Hsia, R. Bashir, and H. J. Kong, "Living" microvascular stamp for patterning of functional neovessels; orchestrated control of matrix property and geometry, Adv. Mater., 24(1), 58 (2012). https://doi.org/10.1002/adma.201103207
  8. T. G. Singh and N. Sharma, Nanobiomaterials in cosmetics: current status and future prospects, Nanobiomaterials in Galenic Formulations and Cosmetics, 10, 149 (2016).
  9. K. H. Baek, J. H. Jeong, A. Shkumatov, R. Bashir, and H. J. Kong, In situ self-folding assembly of a multi-walled hydrogel tube for uniaxial sustained molecular release, Adv. Mater., 25, 5568 (2013). https://doi.org/10.1002/adma.201300951
  10. S. W. Cho, S. G. Shin, H. J. Kim, S. R. Han, and J. H. Jeong, Self-folding of multi-layered hydrogel designed for biological machine, Polym. Korea, 41(2), 346 (2017). https://doi.org/10.7317/pk.2017.41.2.346
  11. S. Kim, K. Lee, and C. Cha, Refined control of thermoresponsive swelling/deswelling and drug release properties of poly (N-isopropylacrylamide) hydrogels using hydrophilic polymer crosslinkers, J. Biomater. Sci. Polym. Ed., 27(17), 1698 (2016). https://doi.org/10.1080/09205063.2016.1230933
  12. M. H. Jung, S. G. Shin, J. W. Lim, S. R. Han, H. J. Kim, and J. H. Jeong, Tuning the stiffness of dermal fibroblast-encapsulating collagen gel by sequential cross-linking, J. Soc. Cosmet. Sci. Korea, 44, 23 (2018).
  13. A. Revzin, R. J. Russell, V. K. Yadavalli, W. G. Koh, C. Diester, D. D. Hile, M. B. Mellott, and M. V. Pishko, Fabrication of poly (ethylene glycol) hydrogel microstructures using photolithography, Langmuir, 17, 5440 (2001). https://doi.org/10.1021/la010075w