DOI QR코드

DOI QR Code

Cytotype distribution and ecology of Allium thunbergii (= A. sacculiferum) with a special reference to South Korean populations

  • SHUKHERDORJ, Baasanmunkh (Department of Biology and Chemistry, Changwon National University) ;
  • JANG, Ju Eun (Department of Biology and Chemistry, Changwon National University) ;
  • DUCHOSLAV, Martin (Plant Biosystematics and Ecology Research Group, Department of Botany, Faculty of Science, Palacky University) ;
  • CHOI, Hyeok Jae (Department of Biology and Chemistry, Changwon National University)
  • Received : 2018.04.03
  • Accepted : 2018.12.08
  • Published : 2018.12.30

Abstract

Polyploidization plays an important role in generating the current high diversity of plants. Studies of the distributional patterns of diploid and derivative polyploid races have provided important insights into the evolutionary process and cryptic speciation by polyploidization within and between closely related taxa defined on the basis of their morphology. Allium thunbergii and A. sacculiferum, occurring throughout eastern Russia, eastern China, Korea, and Japan, are examples of closely related species with unsolved taxonomic relationships. A total of 97 and 65 individuals from 26 and 13 populations of A. thunbergii (including var. thunbergii, var. deltoids, and var. teretifolium) and A. sacculiferum, respectively, were studied to determine their ploidy. The geographic structure and habitat differentiation of the cytotypes were also analyzed. The main cytotype of A. thunbergii was diploid (92.3% in total; the rest were tetraploids). In contrast, the majority of A. sacculiferum plants were tetraploids (69.2% of the total; the rest were diploids). No populations of the studied taxa harbored both cytotypes. Allium thunbergii was more often found at higher elevations than A. sacculiferum, and it tended to occur more frequently on rocky slopes and below forests in mountainous areas. On the other hand, A. sacculiferum occurred at forest margins and in lowland pastures. The cytotypes differed with respect to the elevation; diploids were found more frequently at higher elevations than tetraploids. The results of this study and additional biosystematics data indicate that the morphological characteristics of A. thunbergii and A. sacculiferum may be influenced by polyploidization and by their adaptation to various habitat conditions and that A. thunbergii and A. sacculiferum do not clearly fulfill the requirements of any species concept. Consequently, we propose that A. sacculiferum be considered as an additional synonym of A. thunbergii. Additionally, Allium thunbergii var. deltoides is unified into A. thunbergii var. thunbergii.

Keywords

References

  1. Beaulieu, J. M., I. J. Leitch, S. Patel, A. Pendharkar and C. A. Knight. 2008. Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytologist 179: 975-986. https://doi.org/10.1111/j.1469-8137.2008.02528.x
  2. Bierzychudek, P. 1985. Patterns in plant parthenogenesis. Experientia 41: 1225-1264.
  3. Choi, H. J. and B. U. Oh. 2011. A partial revision of Allium (Amaryllidaceae) in Korea and north-eastern China. Botanical Journal of the Linnean Society 167: 153-211. https://doi.org/10.1111/j.1095-8339.2011.01166.x
  4. Choi, H. J., L. M. Giussani, C. G. Jang, B. U. Oh and J. H. Cota-Sanchez. 2012. Systematics of disjunct northeastern Asian and northern North American Allium (Amaryllidaceae). Botany 90: 491-508. https://doi.org/10.1139/b2012-031
  5. Comai, L. 2005. The advantages and disadvantages of being polyploid. Nature Reviews Genetics 6: 836-846. https://doi.org/10.1038/nrg1711
  6. Duchoslav, M., L. Safarova and F. Krahulec. 2010. Complex distribution patterns, ecology and coexistence of ploidy levels of Allium oleraceum (Alliaceae) in the Czech Republic. Annals of Botany 105: 719-735. https://doi.org/10.1093/aob/mcq035
  7. Felber-Girard, M., F. Felber and A. Buttler. 1996. Habitat differentiation in a narrow hybrid zone between diploid and tetraploid Anthoxanthum alpinum. New Phytologist 133: 531-540. https://doi.org/10.1111/j.1469-8137.1996.tb01921.x
  8. Filipova, L. and F. Krahulec. 2006. The transition zone between Anthoxanthum alpinum and A. odoratum in the Krkonose Mts. Preslia 78: 317-330.
  9. Friesen, N. 1992. Systematics of the Siberian polyploid complex in subgenus Rhizirideum (Allium). In The Genus Allium: Taxonomic Problems and Genetic Resources. Hanelt, P., K. Hammer and H. Knupffer (eds.), Institut fur Pflanzengenetik und Kulturpflanzenforschung, Gatersleben. Pp. 55-66.
  10. Friesen, N., R. M. Fritsch and F. R. Blattner. 2006. Phylogeny and new intrageneric classification of Allium (Alliaceae) based on nuclear ribosomal DNA ITS sequences. Aliso 22: 372-395. https://doi.org/10.5642/aliso.20062201.31
  11. Gao, R., H. Wang, B. Dong, X. Yang, S. Chen, J. Jiang, Z. Zhang, C. Liu, N. Zhao and F. Chen. 2016. Morphological, genome and gene expression changes in newly induced autopolyploid Chrysanthemum lavandulifolium (Fisch. ex Trautv.) Makino. International Journal of Molecular Sciences 17: 1690. https://doi.org/10.3390/ijms17101690
  12. Glennon, K. L., M. E. Ritchie and K. A. Segraves. 2014. Evidence for shared broad-scale climatic niches of diploid and polyploid plants. Ecology Letters 17: 574-582. https://doi.org/10.1111/ele.12259
  13. Grant, V. 1981. Plant Speciation. Columbia University Press, New York. Pp. 307-323.
  14. Grusz, A. L., M. D. Windham and K. M. Pryer. 2009. Deciphering the origins of apomictic polyploids in the Cheilanthes yavapensis complex (Pteridaceae). American Journal of Botany 96: 1636-1645. https://doi.org/10.3732/ajb.0900019
  15. Hao, G.-Y., M. E. Lucero, S. C. Sanderson, E. H. Zacharias and N. M. Holbrook. 2013. Polyploidy enhances the occupation of heterogeneous environments through hydraulic related tradeoffs in Atriplex canescens (Chenopodiaceae). New Phytologist 197: 970-978. https://doi.org/10.1111/nph.12051
  16. Hanelt, P., J. Schultze-Motel, R. Fritsch, J. Kruse, H. I. Maass, H. Ohle and K. Pistrick. 1992. Infrageneric grouping of Allium: the Gatersleben approach. In The Genus Allium: Taxonomic Problems and Genetic Resources. Hanelt, P., K. Hammer and H. Knupffer (eds.), Institut fur Pflanzengenetik und Kulturpflanzenforschung, Gatersleben. Pp. 107-123.
  17. Hoshiya, S. 1982. Karyotic studies in Allium thunbergii (Liliaceae) 1. Distribution of B-chromosome in natural populations of A. thunbergii in Central district, Honshu. Journal of Phytogeography and Taxonomy 30: 12-18.
  18. Hotta, M. 1998. Taxonomical notes on plants of southern Japan IV. The Allium thunbergii group (Liliaceae) distributed in southern Kyushu and Ryukyu Islands. Acta Phytotaxonomica et Geobotanica 49: 57-66.
  19. Husband, B. C. and D. W. Schemske. 1998. Cytotype distribution at a diploid-tetraploid contact zone in Chamerion (Epilobium) angustifolium (Onagraceae). American Journal of Botany 85: 1688-1694. https://doi.org/10.2307/2446502
  20. Kihara, H. and T. Ono. 1926. Chromosomenzahlen und systematische Gruppierung der Rumex-Arten. Zeitschrift fur Zellforschung und Mikroskopische Anatomie 4: 475-481. https://doi.org/10.1007/BF00391215
  21. Ko, E.-M., H.-J. Choi and B.-U. Oh. 2009. A cytotaxonomic study of Allium (Alliaceae) sect. Sacculiferum in Korea. Korean Journal of Plant Taxonomy 39: 170-180. (in Korean) https://doi.org/10.11110/kjpt.2009.39.3.170
  22. Kolar, F., M. Certner, J. Suda, P. Schonswetter and B. C. Husband. 2017. Mixed-ploidy species: progress and opportunities in polyploid research. Trends in Plant Science 22: 1041-1055. https://doi.org/10.1016/j.tplants.2017.09.011
  23. Kurita, M. 1952. On the karyotype of some Allium-species from Japan. Memoirs of Ehime University, Section 2, Natural Science 1: 179-188.
  24. Levin, D. A. 2002. The Role of Chromosomal Change in Plant Evolution. Oxford University Press, New York, 230 pp.
  25. Lewis, W. H. 1980. Polyploidy in insect evolution. In Polyploidy: Biological Relevance. Basic Life Sciences. Vol. 13. Lewis, W. H. (ed.), Plenum Press, New York. Pp. 277-312.
  26. Li, Q.-Q., S.-D. Zhou, X.-J. He, Y. Yu, Y.-C. Zhang and X.-Q. Wei. 2010. Phylogeny and biogeography of Allium (Amaryllidaceae: Allieae) based on nuclear ribosomal internal transcribed spacer and chloroplast rps16 sequences, focusing on the inclusion of species endemic to China. Annals of Botany 106: 709-733. https://doi.org/10.1093/aob/mcq177
  27. Madlung, A. 2013. Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity 110: 99-104. https://doi.org/10.1038/hdy.2012.79
  28. Manzaneda, A. J., P. J. Rey, J. M. Bastida, C. Weiss-Lehman, E. Raskin and T. Mitchell-Olds. 2012. Environmental aridity is associated with cytotype segregation and polyploidy occurrence in Brachypodium distachyon (Poaceae). New Phytologist 193: 797-805. https://doi.org/10.1111/j.1469-8137.2011.03988.x
  29. Marchant, D. B., D. E. Soltis and P. S. Soltis. 2016. Patterns of abiotic niche shifts in allopolyploids relative to their progenitors. New Phytologist 212: 708-718. https://doi.org/10.1111/nph.14069
  30. Muntzing, A. 1936. The evolutionary significance of autopolyploidy. Hereditas 21: 263-378.
  31. Noda, S. and S. Kawano. 1998. The biology of Allium monanthum (Liliaceae) I. Polyploid complex and variations in karyotype. Plant Species Biology 3: 13-26.
  32. Noda, S. and H. Watanabe. 1967. Chromosome constitutions and polymorphic B-chromosomes in Allium thunbergii (a preliminary note). Bulletin of Osaka Gakuin University 11: 105-128. (in Japanese)
  33. Otto S. P. and J. Whitton. 2000. Polyploid incidence and evolution. Annual Review of Genetics 34: 401-437. https://doi.org/10.1146/annurev.genet.34.1.401
  34. Parisod, C. and O. Broennimann. 2016. Towards unified hypotheses of the impact of polyploidy on ecological niches. New Phytologist 212: 540-542. https://doi.org/10.1111/nph.14133
  35. Peirson, J. A., A. A. Reznicek and J. C. Semple. 2012. Polyploidy, infraspecific cytotype variation, and speciation in Goldenrods: the cytogeography of Solidago subsect. Humiles (Asteraceae) in North America. Taxon 61: 197-210. https://doi.org/10.1002/tax.611014
  36. Probatova, N. S., V. Y. Barkalov, E. G. Rudyka, E. A. Chubar, D. Y. Tzyrenova and V. P. Seledets. 2013. Allium sacculiferum. In IAPT/IOPB chromosome data 15. Marhold, K. (ed.). Taxon 62: 1079.
  37. Ramsey, J. 2011. Polyploidy and ecological adaptation in wild yarrow. Proceedings of the National Academy of Sciences of the United States of America 108: 7096-7101. https://doi.org/10.1073/pnas.1016631108
  38. Ramsey, J. and D. W. Schemske. 1998. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Review of Ecology and Systematics 29: 467-501. https://doi.org/10.1146/annurev.ecolsys.29.1.467
  39. Rice, A., L. Glick, S. Abadi, M. Einhorn, N. M. Kopelman, A. Salman-Minkov, J. Mayzel, O. Chay and I. Mayrose. 2015. The Chromosome Counts Database (CCDB): a community resource of plant chromosome numbers. New Phytologist 206: 19-26. https://doi.org/10.1111/nph.13191
  40. Safarova, L., M. Duchoslav, M. Jandova and F. Krahulec. 2011. Allium oleraceum in Slovakia: cytotype distribution and ecology. Preslia 83: 513-527.
  41. Sanders, R. W. 1987. Taxonomic significance of chromosome observations in Caribbean species of Lantana (Verbenaceae). American Journal of Botany 74: 914-920. https://doi.org/10.1002/j.1537-2197.1987.tb08695.x
  42. Schonswetter, P., M. Lachmayer, C. Lettner, D. Prehsler, S. Rechnitzer., D. S. Reich, M. Sonnleitner, I. Wagner, K. Hulber, G. M. Schneeweiss, P. Travníček and J. Suda. 2007. Sympatric diploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps are separated along an altitudinal gradient. Journal of Plant Research 120: 721-725. https://doi.org/10.1007/s10265-007-0108-x
  43. Seregin, A. P., G. Anačkov and N. Friesen. 2015. Molecular and morphological revision of the Allium saxatile group (Amaryllidaceae): geographical isolation as the driving force of underestimated speciation. Botanical Journal of the Linnean Society 178: 67-101. https://doi.org/10.1111/boj.12269
  44. Soltis, D. E., P. S. Soltis and L. H. Rieseberg. 1993. Molecular data and the dynamic nature of polyploidy. Critical Reviews in Plant Sciences 12: 243-273. https://doi.org/10.1080/07352689309701903
  45. Soltis, D. E., V. A. Albert, J. Leebens-Mack, C. D. Bell, A. H. Paterson, C. Zheng, D. Sankoff, C. W. de Pamphilis, P. K. Wall and P. S. Soltis. 2009. Polyploidy and angiosperm diversification. American Journal of Botany 96: 336-348. https://doi.org/10.3732/ajb.0800079
  46. Soltis, D. E., R. J. A. Buggs, J. J. Doyle and P. S. Soltis. 2010. What we still don’t know about polyploidy. Taxon 59: 1387-1403. https://doi.org/10.1002/tax.595006
  47. Soltis, D. E., P. S. Soltis, D. W. Schemske, J. F. Hancock, J. N. Thompson, B. C. Husband and W. S. Judd. 2007. Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon 56: 13-30.
  48. Sonnleitner, M., K. Hulber, R. Flatscher, P. Escobar García, M. Winkler, J. Suda, P. Schonswetter and G. M. Schneeweiss. 2016. Ecological differentiation of diploid and polyploid cytotypes of Senecio carniolicus sensu lato (Asteraceae) is stronger in areas of sympatry. Annals of Botany 117: 269-276.
  49. Suda, J., H. Weiss-Schneeweiss, A. Tribsch, G. M. Schneeweiss, P. Travníček and P. Schonswetter. 2007. Complex distribution patterns of di-, tetra-, and hexaploid cytotypes in the European high mountain plant Senecio carniolicus (Asteraceae). American Journal of Botany 94: 1391-1401. https://doi.org/10.3732/ajb.94.8.1391
  50. Sugiyama, S. I. 2005. Polyploidy and cellular mechanisms changing leaf size: comparison of diploid and autotetraploid populations in two species of Lolium. Annals of Botany 96: 931-938. https://doi.org/10.1093/aob/mci245
  51. te Beest, M., J. J. Le Roux, D. M. Richardson, A. K. Brysting, J. Suda, M. Kubesova and P. Pysek. 2012. The more the better? The role of polyploidy in facilitating plant invasions. Annals of Botany 109: 19-45. https://doi.org/10.1093/aob/mcr277
  52. Thompson, J. N., B. M. Cunningham, K. Segraves, D. M. Althoff and D. Wagner. 1997. Plant polyploidy and insect/plant interactions. The American Naturalist 150: 730-743. https://doi.org/10.1086/286091
  53. van de Peer, Y., E. Mizrachi and K. Marchal. 2017. The evolutionary significance of polyploidy. Nature Reviews Genetics 18: 411-424. https://doi.org/10.1038/nrg.2017.26
  54. Wefferling, K. M., S. Castro, J. Loureiro, M. Castro, D. Tavares and S. B. Hoot. 2017. Cytogeography of the subalpine marsh marigold polyploid complex (Caltha leptosepala s.l., Ranunculaceae). American Journal of Botany 104: 271-285. https://doi.org/10.3732/ajb.1600365
  55. Wood, T. E., N. Takebayashi, M. S. Barker, I. Mayrose, P. B. Greenspoon and L. H. Rieseberg. 2009. The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences of the United States of America 106: 13875-13879. https://doi.org/10.1073/pnas.0811575106
  56. Xie-Kui, C., C.-Q. Ao, Q. Zhang, L.-T. Chen and J.-Q. Liu. 2008. Diploid and tetraploid distribution of Allium przewalskianum Regel. (Liliaceae) in the Qinghai-Tibetan Plateau and adjacent regions. Caryologia 61: 192-200. https://doi.org/10.1080/00087114.2008.10589629
  57. Yu, S. O., D. H. Cho and W. T. Lee. 1981b. Studies on the relationship of the Allium species grown wild in Korea. Bulletin of the Agricultural College, Wonkwang University 4: 187-251. (in Korean)
  58. Yu, S. O., S. T. Lee and W. T. Lee. 1981a. A taxonomic study on the Allium species in Korea. Korean Journal of Plant Taxonomy 11: 21-41. (in Korean) https://doi.org/10.11110/kjpt.1981.11.1.021

Cited by

  1. Allium vegetables for possible future of cancer treatment vol.33, pp.12, 2018, https://doi.org/10.1002/ptr.6490
  2. Allium ulleungense (Amaryllidaceae), a new species endemic to Ulleungdo Island, Korea vol.49, pp.4, 2018, https://doi.org/10.11110/kjpt.2019.49.4.294
  3. Karyology of Some Coastal and Water Plants from Far East (Russia) vol.63, pp.1, 2021, https://doi.org/10.1556/034.63.2021.1-2.7
  4. Karyology of Some Coastal and Water Plants from Far East (Russia) vol.63, pp.1, 2021, https://doi.org/10.1556/034.63.2021.1-2.7
  5. Notes on Allium section Rhizirideum (Amaryllidaceae) in South Korea and northeastern China: with a new species from Ulleungdo Island vol.176, pp.None, 2018, https://doi.org/10.3897/phytokeys.176.63378