DOI QR코드

DOI QR Code

Effects of Queso Blanco Cheese Containing Bifidobacterium longum KACC 91563 on the Intestinal Microbiota and Short Chain Fatty Acid in Healthy Companion Dogs

  • Park, Ho-Eun (College of Veterinary Medicine, Chungbuk National University) ;
  • Kim, Ye Jin (Division of Life Sciences, Incheon National University) ;
  • Do, Kyung-Hyo (College of Veterinary Medicine, Chungbuk National University) ;
  • Kim, Jae Kwang (Division of Life Sciences, Incheon National University) ;
  • Ham, Jun-Sang (Animal Products Development and Utilization Division, National Institute of Animal Science) ;
  • Lee, Wan-Kyu (College of Veterinary Medicine, Chungbuk National University)
  • Received : 2018.10.30
  • Accepted : 2018.11.21
  • Published : 2018.12.31

Abstract

The effects of Queso Blanco cheese containing Bifidobacterium longum KACC 91563 was studied on the intestinal microbiota and short chain fatty acids (SCFAs) in healthy companion dogs. There were three experimental groups with five healthy dogs each: a control group, not fed with any cheese, and groups fed with Queso Blanco cheese with (QCB) or without B. longum KACC 91563 (QC) for 8 weeks. Fecal samples were collected 5 times before, during, and after feeding with cheese. Intestinal microbiota was analyzed using two non-selective agar plates (BL and TS) and five selective agar plates (BS, NN, LBS, TATAC, and MacConkey). SPME-GC-MS method was applied to confirm SCFAs and indole in dog feces. The six intestinal metabolites such as acetic, propionic, butyric, valeric, isovaleric acid and indole were identified in dog feces. Administration of B. longum KACC 91563 (QCB) for 8 weeks significantly increased the beneficial intestinal bacteria such as Bifidobacterium ($8.4{\pm}0.55$) and reduced harmful bacteria such as Enterobacteriaceae and Clostridium (p<0.05). SCFA such as acetic and propionic acid were significantly higher in the QCB group than in the Control group (p<0.05). In conclusion, this study demonstrates that administration of Queso Blanco cheese containing B. longum KACC 91563 had positive effects on intestinal microbiota and metabolites in companion dogs. These results suggest that Queso Blanco cheese containing B. longum KACC 91563 could be used as a functional food for companion animals and humans.

Keywords

Acknowledgement

Grant : Cooperative Research Program for Agriculture Science & Technology Development

Supported by : Rural Development Administration

References

  1. AOAC. 2006. Official methods of analysis. 15th ed. Association of Officaial Analytical Chemists, Washington, DC, USA. pp 210-219.
  2. Baillon ML, Marshall-Jones ZV, Butterwick RF. 2004. Effects of probiotic Lactobacillus acidophilus strain DSM13241 in healthy adult dogs. Am J Vet Res 65:338-343. https://doi.org/10.2460/ajvr.2004.65.338
  3. Bartosch S, Woodmansey EJ, Paterson JC, Mcmurdo ME, Macfarlane GT. 2005. Microbiological effects of consuming a synbiotic containing Bifidobacterium bifidum, Bifidobacterium lactis, and oligofructose in elderly persons, determined by real-time polymerase chain reaction and counting of viable bacteria. Clin Infect Dis 40:28-37. https://doi.org/10.1086/426027
  4. Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, Nikkila J, Monti D, Satokari R, Franceschi C, Brigidi P, De Vos W. 2010. Through ageing, and beyond: Gut microbiota and inflammatory status in seniors and centenarians. PLOS ONE 5:e10667. https://doi.org/10.1371/journal.pone.0010667
  5. Biagi G, Cipollini I, Pompei A, Zaghini G, Matteuzzi D. 2007. Effect of a Lactobacillus animalis strain on composition and metabolism of the intestinal microflora in adult dogs. Vet Microbiol 124:160-165. https://doi.org/10.1016/j.vetmic.2007.03.013
  6. Bianchi F, Dall'asta M, Del Ri D, Mangia A, Musci M, Scazzina F. 2011. Development of a headspace solid-phase microextraction gas chromatography-mass spectrometric method for the determination of short-chain fatty acids from intestinal fermentation. Food Chem 129:200-205. https://doi.org/10.1016/j.foodchem.2011.04.022
  7. Brandle J, Domig KJ, Kneifel W. 2016. Relevance and analysis of butyric acid producing clostridia in milk and cheese. Food Control 67:96-113. https://doi.org/10.1016/j.foodcont.2016.02.038
  8. Brigidi P, Vitali B, Swennen E, Bazzocchi G, Matteuzzi D. 2001. Effects of probiotic administration upon the composition and enzymatic activity of human fecal microbiota in patients with irritable bowel syndrome or functional diarrhea. Res Microbiol 152:735-741. https://doi.org/10.1016/S0923-2508(01)01254-2
  9. Butel MJ. 2014. Probiotics, gut microbiota and health. Med Mal Infect 44:1-8.
  10. Cabaton NJ, Canlet C, Wadia PR, Tremblay-Franco M, Gautier R, Molina J, Sonnenschein C, Cravedi JP, Rubin BS, Soto AM, Zalko D. 2013. Effects of low doses of bisphenol A on the metabolome of perinatally exposed CD-1 mice. Environ Health Perspect 121:586-593. https://doi.org/10.1289/ehp.1205588
  11. Den Besten G, Van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325-2340. https://doi.org/10.1194/jlr.R036012
  12. Fuller R. 1989. Probiotics in man and animals. J Appl Bacteriol 66:365-378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
  13. George Kerry R, Patra JK, Gouda S, Park Y, Shin HS, Das G. 2018. Benefaction of probiotics for human health: A review. J Food Drug Anal 26:927-939. https://doi.org/10.1016/j.jfda.2018.01.002
  14. Gibson GR, Beatty ER, Wang X, Cummings JH. 1995. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108:975-982. https://doi.org/10.1016/0016-5085(95)90192-2
  15. Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB. 2004. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr Res Rev 17:259-275. https://doi.org/10.1079/NRR200479
  16. Gibson GR, Roberfroid MB. 1995. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J Nutr 125:1401-1412. https://doi.org/10.1093/jn/125.6.1401
  17. Goldmann T, Perisset A, Scanlan F, Stadler RH. 2005. Rapid determination of furan in heated foodstuffs by isotope dilution solid phase micro-extraction-gas chromatography-mass spectrometry (SPME-GC-MS). Analyst 130:878-883. https://doi.org/10.1039/b419270b
  18. Ham JS, Jeong SG, Noh YB, Shin JH, Han GS, Chae HS, Yoo YM, Ahn JN, Lee JW, Jo C, Lee YK. 2007. Effects of gamma irradiation on Queso Blanco cheese. Korean J Dairy Sci Technol 25:15-20.
  19. Hemalatha R, Ouwehand AC, Saarinen MT, Prasad UV, Swetha K, Bhaskar V. 2017. Effect of probiotic supplementation on total lactobacilli, bifidobacteria and short chain fatty acids in 2-5-year-old children. Microb Ecol Health Dis 28:1298340. https://doi.org/10.1080/16512235.2017.1298340
  20. Hilton E, Kolakowski P, Singer C, Smith M. 1997. Efficacy of Lactobacillus GG as a diarrheal preventive in travelers. J Travel Med 4:41-43. https://doi.org/10.1111/j.1708-8305.1997.tb00772.x
  21. Holzapfel WH, Haberer P, Snel J, Schillinger U, J Huis In't Veld JH. 1998. Overview of gut flora and probiotics. Int J Food Microbiol 41:85-101. https://doi.org/10.1016/S0168-1605(98)00044-0
  22. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. 2001. Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881-884. https://doi.org/10.1126/science.291.5505.881
  23. Kalivodova A, Hron K, Filzmoser P, Najdekr L, Janeckova H, Adam T. 2015. PLS‐DA for compositional data with application to metabolomics. J Chemom 29:21-28. https://doi.org/10.1002/cem.2657
  24. Lahtinen S, Ouwehand AC, Salminen S, Wright A. 2011. Lactic acid bacteria: Microbiological and functional aspects. 4th ed. CRC Press, Boca Raton, FL, USA.
  25. Lee WK, Lee SM, Bae HS, Baek YJ. 1999. Effect of Bifidobacterium longum HY8001 administration on human fecal bacterial enzymes and microflora. Korean J Appl Microbiol Biotechnol 27:267-272.
  26. Lee YK, Puong KY, Ouwehand AC, Salminen S. 2003. Displacement of bacterial pathogens from mucus and Caco-2 cell surface by lactobacilli. J Med Microbiol 52:925-930. https://doi.org/10.1099/jmm.0.05009-0
  27. Lindon JC, Holmes E, Nicholson JK. 2004. Toxicological applications of magnetic resonance. Prog Nucl Magn Reson Spectrosc 45:109-143. https://doi.org/10.1016/j.pnmrs.2004.05.001
  28. Marteau P, Seksik P, Jian R. 2002. Probiotics and intestinal health effects: A clinical perspective. Br J Nutr 88:S51-S57. https://doi.org/10.1079/BJN2002629
  29. Martinez FA, Balciunas EM, Converti A, Cotter PD, De Souza Oliveira RP. 2013. Bacteriocin production by Bifidobacterium spp. A review. Biotechnol Adv 31:482-488. https://doi.org/10.1016/j.biotechadv.2013.01.010
  30. Matsumoto M, Tadenuma T, Nakamura K, Kume H, Imai T, Kihara R, Watanabe M, Benno Y. 2000. Effect of Bifidobacterium lactis LKM 512 yoghurt on fecal microflora in middle to old aged persons. Microb Ecol Health Dis 12:77-80. https://doi.org/10.1080/089106000435455
  31. Mitsuoka T, Morishita Y, Terada A, Yamamoto S. 1969. A simple method ("plate-in-bottle method") for the cultivation of fastidious anaerobes. Jpn J Microbiol 13:383-385. https://doi.org/10.1111/j.1348-0421.1969.tb00482.x
  32. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. 2012. Host-gut microbiota metabolic interactions. Science 336:1262-1267. https://doi.org/10.1126/science.1223813
  33. O'mahony L, Mccarthy J, Kelly P, Hurley G, Luo F, Chen K, O'sullivan GC, Kiely B, Collins JK, Shanahan F, Quigley EM. 2005. Lactobacillus and Bifidobacterium in irritable bowel syndrome: Symptom responses and relationship to cytokine profiles. Gastroenterology 128:541-551. https://doi.org/10.1053/j.gastro.2004.11.050
  34. Ong L, Henriksson A, Shah NP. 2006. Development of probiotic Cheddar cheese containing Lactobacillus acidophilus, Lb. casei, Lb. paracasei and Bifidobacterium spp. and the influence of these bacteria on proteolytic patterns and production of organic acid. Int Dairy J 16:446-456. https://doi.org/10.1016/j.idairyj.2005.05.008
  35. Prasanna PHP, Grandison AS, Charalampopoulos D. 2014. Bifidobacteria in milk products: An overview of physiological and biochemical properties, exopolysaccharide production, selection criteria of milk products and health benefits. Food Res Int 55:247-262. https://doi.org/10.1016/j.foodres.2013.11.013
  36. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Meta HITC, Bork P, Ehrlich SD, Wang J. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59-65. https://doi.org/10.1038/nature08821
  37. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, Guarner F, Respondek F, Whelan K, Coxam V, Davicco MJ, Leotoing L, Wittrant Y, Delzenne NM, Cani PD, Neyrinck AM, Meheust A. 2010. Prebiotic effects: Metabolic and health benefits. Br J Nutr 104 Suppl 2:S1-S63. https://doi.org/10.1017/S0007114510003909
  38. Strompfova V, Pogany Simonova M, Gancarcikova S, Mudronova D, Farbakova J, Madari A, Laukova A. 2014. Effect of Bifidobacterium animalis B/12 administration in healthy dogs. Anaerobe 28:37-43. https://doi.org/10.1016/j.anaerobe.2014.05.001
  39. Sullivan A, Nord CE. 2002. The place of probiotics in human intestinal infections. Int J Antimicrob Agents 20:313-319. https://doi.org/10.1016/S0924-8579(02)00199-1
  40. Tannock GW. 2001. Molecular assessment of intestinal microflora. Am J Clin Nutr 73:410S-414S. https://doi.org/10.1093/ajcn/73.2.410s
  41. Van Zanten GC, Knudsen A, Roytio H, Forssten S, Lawther M, Blennow A, Lahtinen SJ, Jakobsen M, Svensson B, Jespersen L. 2012. The effect of selected synbiotics on microbial composition and short-chain fatty acid production in a model system of the human colon. PLOS ONE 7:e47212. https://doi.org/10.1371/journal.pone.0047212
  42. Wang Y, Xu N, Xi A, Ahmed Z, Zhang B, Bai X. 2009. Effects of Lactobacillus plantarum MA2 isolated from Tibet kefir on lipid metabolism and intestinal microflora of rats fed on high-cholesterol diet. Appl Microbiol Biotechnol 84:341-347. https://doi.org/10.1007/s00253-009-2012-x

Cited by

  1. 프로바이오틱스의 기능성과 안전성 vol.37, pp.2, 2019, https://doi.org/10.22424/jmsb.2019.37.2.94
  2. Expression and Purification of Extracellular Solute-Binding Protein (ESBP) in Escherichia coli, the Extracellular Protein Derived from Bifidobacterium longum KACC 91563 vol.39, pp.4, 2018, https://doi.org/10.5851/kosfa.2019.e50
  3. Nitroso-hemoglobin Increased the Color Stability and Inhibited the Pathogenic Bacteria in a Minced Beef Model: A Combined Low-field NMR Study vol.39, pp.5, 2018, https://doi.org/10.5851/kosfa.2019.e40
  4. Akkermansia muciniphila Prevents Fatty Liver Disease, Decreases Serum Triglycerides, and Maintains Gut Homeostasis vol.86, pp.7, 2020, https://doi.org/10.1128/aem.03004-19
  5. Decrease in abundance of bacteria of the genus Bifidobacterium in gut microbiota may be related to pre-eclampsia progression in women from East China vol.65, pp.None, 2018, https://doi.org/10.29219/fnr.v65.5781
  6. Protective effect of Bifidobacterium bifidum FSDJN7O5 and Bifidobacterium breve FHNFQ23M3 on diarrhea caused by enterotoxigenic Escherichia coli vol.12, pp.16, 2021, https://doi.org/10.1039/d1fo00504a
  7. The Potential of Probiotics to Eradicate Gut Carriage of Pathogenic or Antimicrobial-Resistant Enterobacterales vol.10, pp.9, 2018, https://doi.org/10.3390/antibiotics10091086
  8. Influence of Probiotic Supplementation on Health Status of the Dogs: A Review vol.11, pp.23, 2018, https://doi.org/10.3390/app112311384