DOI QR코드

DOI QR Code

The Quantitative Analysis of Cooling Effect by Urban Forests in Summer

여름철 도시 인근 산림에 의한 냉각효과의 정량화에 대한 연구

  • Lee, Hojin (Department of Forest Sciences, Seoul National University) ;
  • Cho, Seongsik (Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University) ;
  • Kang, Minseok (National Center for AgroMeteorology) ;
  • Kim, Joon (Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University) ;
  • Lee, Hoontaek (Department of Forest Sciences, Seoul National University) ;
  • Lee, Minsu (Department of Forest Sciences, Seoul National University) ;
  • Jeon, Jihyeon (Department of Forest Sciences, Seoul National University) ;
  • Yi, Chaeyeon (Research Center of Atmosphere Environment, Hankuk University of Foreign Studies) ;
  • Janicke, Britta (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Cho, Changbeom (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Kim, Kyu Rang (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Kim, Baekjo (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Kim, Hyunseok (Department of Forest Sciences, Seoul National University)
  • 이호진 (서울대학교 산림과학부 산림환경학전공) ;
  • 조성식 (서울대학교 협동과정 농림기상학전공) ;
  • 강민석 (국가농림기상센터) ;
  • 김준 (서울대학교 협동과정 농림기상학전공) ;
  • 이훈택 (서울대학교 산림과학부 산림환경학전공) ;
  • 이민수 (서울대학교 산림과학부 산림환경학전공) ;
  • 전지현 (서울대학교 산림과학부 산림환경학전공) ;
  • 이채연 (한국외국어대학교 대기환경연구센터) ;
  • ;
  • 조창범 (국립기상과학원 응용기상연구과) ;
  • 김규랑 (국립기상과학원 응용기상연구과) ;
  • 김백조 (국립기상과학원 응용기상연구과) ;
  • 김현석 (서울대학교 산림과학부 산림환경학전공)
  • Received : 2018.02.18
  • Accepted : 2018.03.16
  • Published : 2018.03.30

Abstract

A variety of micro meteorological variables such as air temperature, wind, solar radiation and latent heat at Gwangneung forests (conifer and broadleaved forests) and AWS (Automated Weather Station) of Pocheon urban area were used to quantify the air temperature reduction effect of forests, which is considered to be an eco-friendly solution for reducing the urban heat island intensity during summer. In June, July and August of 2016 and 2017, the average maximum air temperature differences between above and below canopy of forests, and between the forests and urban areas were $-1.9^{\circ}C$ and $-3.4^{\circ}C$ respectively, and they occurred at 17:00. However, there was no difference between conifer and broadleaved forests. The effect of air temperature reduction by the forests was positively correlated with accumulated evapotranspiration and solar radiation from 14:00 to 17:00 and showed a negative correlation with wind speed. We have developed a model to quantify the effect of air temperature reduction by forests using these variables. The nighttime air temperature reduction effect by forests was due to the generation of cold air from radiative cooling and the air temperature inversion phenomenon that occurs when the generated cold air moves down the side of mountain. The model was evaluated in Seoul by using 28 AWSs. The evaluation shows that the air temperature of each district in Seoul was negatively correlated with the area and size of the surrounding tall vegetation that drives vegetation evapotranspiration during the day. During the night, however, the size of the surrounding tall vegetation and the elevations of nearby mountains were the main influencing factors on the air temperature. Our research emphasizes the importance of the establishment and management of urban forests and the composition of wind roads from mountains for urban air temperature reduction.

여름철 도시의 친환경적 기온 저감 방안으로 고려되는 산림에 의한 기온 저감 효과를 정량화 하기 위해 광릉 침 활엽수림과 인근 포천시의 도시 지역과의 기온차를 기온, 바람, 일사, 잠열 등의 미기상 인자를 이용하여 분석하였다. 2016년과 2017년의 6, 7, 8월 3개월 동안 산림 상 하부와 산림과 도심 지역의 평균 최대 기온차는 각각 $-1.9^{\circ}C$, $-3.4^{\circ}C$로 17시경에 나타났으며, 침 활엽수림 간의 차이는 없었다. 산림에 의한 기온 저감 효과는 14시부터 17시까지 누적된 증발산량, 일사량과 양의 상관관계를 나타냈으며, 풍속과는 음의 상관관계를 나타냈다. 이를 이용해 산림의 기온저감 효과를 정량화하는 모델을 개발하였다. 산림에 의한 야간 기온 저감 효과는 복사냉각으로 인한 찬공기의 생성과 생성된 찬공기가 산지의 하류로 이동하면서 발생하는 기온역전 현상에 의한 것으로 나타났다. 본 연구 결과를 서울시내 28개 AWS를 이용해 검증해 본 결과, 서울시 각 지역 주간의 기온은 식생의 증발산에 영향을 미치는 AWS 주변 식생 면적 및 규모와의 음의 상관관계를, 그리고 야간의 기온은 주변 식생 규모 및 인근 산림의 높이와 유의한 음의 상관관계를 재확인할 수 있었다. 따라서 도시림의 조성과 관리 및 산으로부터 바람길의 조성이 도시 온도 저감에 중요함을 알 수 있다.

Keywords

References

  1. An, S. M., H. G. Son, K. S. Lee and C. Yi, 2016: A study of the urban tree canopy mean radiant temperature mitigation estimation. Journal of the Korean Institute of Landscape Architecture 44(1), 93-106. https://doi.org/10.9715/KILA.2016.44.1.093
  2. AsiaFlux, 2017: Gwangneung deciduous forest (http://asi af lux.net/index.php?page_id=57) 2018.02.12.
  3. AsiaFlux, 2017: Gwangneung coniferous forest (http://asi af lux.net/index.php?page_id=56) 2018.02.12.
  4. Akbari, H., and S. Konopacki, 2005: Calculating energy-saving potentials of heat-island reduction strategies. Energy Policy 33(6), 721-756. https://doi.org/10.1016/j.enpol.2003.10.001
  5. Bacci, L., M. Morabito, A. Raschi, and F. Ugolini, 2003: Thermohygrometric conditions of some urban parks of Florence (Italy) and their effects on human well-being. trees 6, 49pp.
  6. Barradas, V. L., 1991: Air temperature and humidity and human comfort index of some city parks of Mexico City. International Journal of Biometeorology 35(1), 24-28. https://doi.org/10.1007/BF01040959
  7. Block, A. H., S. J. Livesley, and N. S. G. Williams, 2012: Responding to the urban heat island: A review of the potential of green infrastructure. Victorian Centre for Climate Change Adaptation Research Melbourne.
  8. Chang, C. R., M. H. Li, and S. D. Chang, 2007: A preliminary study on the local cool-island intensity of Taipei city parks. Landscape and Urban Planning 80(4), 386-395. https://doi.org/10.1016/j.landurbplan.2006.09.005
  9. Cho, H. S., Y. J. Joung, and M. J. Choi, 2014: Effects of the urban spatial characteristics on urban heat island. Journal of Environmental Policy and Administration 22(2), 27-43.
  10. Choi, D. H., and B. Y. Lee, 2006: Analysis of passive cooling effect of the tree by field observations in the summer. Journal of the Korean Solar Energy Society 26(4), 109-118.
  11. Cochard, H., 2002: Xylem embolism and drought-induced stomatal closure in maize. Planta 215(3), 466-471. https://doi.org/10.1007/s00425-002-0766-9
  12. Cordner, S. M., N. Woodford, and R. Bassed, 2011: Forensic aspects of the 2009 Victorian Bushfires Disaster. Forensic Science International 205(1), 2-7. https://doi.org/10.1016/j.forsciint.2010.08.008
  13. Dimoudi, A., and M. Nikolopoulou, 2003: Vegetation in the urban environment: microclimatic analysis and benefits. Energy and Buildings 35(1), 69-76. https://doi.org/10.1016/S0378-7788(02)00081-6
  14. Gouma, V., 2013: Comparisons of air temperature summer conditions between an urban forest park and its surrounding built-up area with their nearby mountainous forest, in the greater Athens Area, Greece. In Advances in Meteorology, Climatology and Atmospheric Physics (pp. 471-477). Springer, Berlin, Heidelberg.
  15. Heisler, G. M., 1998: Semi-empirical modelling of spatial differences in below-canopy urban air temperature using GIS analysis of satellite images, onsite photography and meteorological measurements. Proceedings of The Second Symposium on Urban Environment, American Meteorological Society, Albuquerque
  16. Huang, L., J. Li, D. Zhao, and J. Zhu, 2008: A fieldwork study on the diurnal changes of urban microclimate in four types of ground cover and urban heat island of Nanjing, China. Building and Environment 43(1), 7-17. https://doi.org/10.1016/j.buildenv.2006.11.025
  17. Jo, H. K., and T. W. Ahn, 1999: Function of microclimate amelioration by urban greenspace. Journal of Korean Institute of Landscape Architecture 76(4), 23-28.
  18. Kang, M., H. J. Kwon, J. H. Lim, and J. Kim, 2009: Understory evapotranspiration measured by eddy-covariance in Gwangneung deciduous and coniferous forests. Korean Journal of Agricultural and Forest Meteorology 11(4), 233-246. https://doi.org/10.5532/KJAFM.2009.11.4.233
  19. Kang, M., B. L. Ruddell, C. Cho, J. Chun, and J. Kim, 2017: Identifying $CO_2$ advection on a hill slope using information flow. Agricultural and forest meteorology 232, 265-278. https://doi.org/10.1016/j.agrformet.2016.08.003
  20. Kim, H. D., and H. S. Goo, 2002: Assessment on the function of microclimate amelioration by urban trees - observational study. Journal of Nakdong River Environmental Research Institute 7(1), 189-198.
  21. Kim, K. R., C. Yi, J. S. Lee, F. Meier, B. Janicke, U. Fehrenbach, and D. Scherer, 2014: BioCAS: Biometeorological climate impact assessment system for building-scale impact assessment of heat-stress related mortality. DIE ERDE-Journal of the Geographical Society of Berlin 145(1-2), 62-79.
  22. Kondo, J., T. Kuwagata, and S. Haginoya, 1989: Heat budget analysis of nocturnal cooling and daytime heating in a basin. Journal of the Atmospheric Sciences 46(19), 2917-2933. https://doi.org/10.1175/1520-0469(1989)046<2917:HBAONC>2.0.CO;2
  23. Korea Centers for Disease Control and Prevention, 2012-2017: The results of heat-related illness surveillance.
  24. Korea Centers for Disease Control and Prevention, 2016: Annual report on the notified patients with heat-related illness in Korea.
  25. Kucera, C. L., 1954: Some relationships of evaporation rate to vapor pressure deficit and low wind velocity. Ecology 35(1), 71-75. https://doi.org/10.2307/1931406
  26. Landsberg, H. E., 1981: The urban climate(Vol. 28). Academic Press.
  27. Loughner, C. P., D. J. Allen, D. L. Zhang, K. E. Pickering, R. R. Dickerson, and L. Landry, 2012: Roles of urban tree canopy and buildings in urban heat island effects: parameterization and preliminary results. Journal of Applied Meteorology and Climatology 51(10), 1775-1793. https://doi.org/10.1175/JAMC-D-11-0228.1
  28. Lee, E. Y., S. K. Moon, and S. R. Shim, 1996: A study on the effect of air temperature and ground temperature mitigation from several arrangements of urban green. Journal of the Korean Institute of Landscape Architecture 24(1), 65-78.
  29. Lee, J. Y., and K. S. Ki, 2016: Correlation between the microclimate and the crown of Platanus orientalis and Ulmus davidiana. Korean Journal of Environment and Ecology 30(4), 793-799. https://doi.org/10.13047/KJEE.2016.30.4.793
  30. Lee, S. J., J. Kim, M. Kang, and B. Malla-Thakuri, 2014: Numerical simulation of local atmospheric circulations in the valley of Gwangneung KoFlux sites. Korean Journal of Agricultural and Forest Meteorology 16(3), 246-260. https://doi.org/10.5532/KJAFM.2014.16.3.246
  31. Maki, M., T. Harimaya, and K. Kikuchi, 1985a: Nocturnal cooling systems in basin. (1) Heat balance analysis. In: The study of mechanism and quantitative prediction of occurrence of the extraordinary cooling in boundary layer as a primary factor of the damage of crops. ed. by Kondo, Journal, Report of Research Group of Natural Disasters, A-60-4, 192-215(in Japanese).
  32. Maki, M., T. Harimaya, and K. Kikuchi, 1985b: Nocturnal cooling systems in basin. (2) Effects of cooling air drainage. In: The study of mechanism and quantitative prediction of occurrence of the extraordinary cooling in boundary layer as a primary factor of the damage of crops. ed. by Kondo, Journal, Report of Research Group of Natural Disasters, A-60-4, 216-232(in Japanese).
  33. Mak, M., T. Harimaya, and K. Kikuchi, 1986: Heat budget studies on nocturnal cooling in a basin. Journal of Meteorology Society of Japan 64, 727-741. https://doi.org/10.2151/jmsj1965.64.5_727
  34. Maki, M., and T. Harimaya, 1988: The effect of advection and accumulation of downslope cold air on nocturnal cooling in basins. Journal of Meteorological Society of Japan. Ser. II 66(4), 581-597.
  35. Marlina, E., I. N. S. Jaya, and A. B. Wijanarto, 2010: Study on the role of urban forest toward temperature reduction in residential area. MAJALAH ILMIAH GLOBE 12(2), 132-145.
  36. Martin-StPaul, N., S. Delzon, and H. Cochard, 2017: Plant resistance to drought depends on timely stomatal closure. Ecology letters 20(11), 1437-1447. https://doi.org/10.1111/ele.12851
  37. Ministry of Land, Infrastructure and Transport, 2016: Statistics of Urban Planning (http://www.molit.go.kr/USR/NEWS/m_71/dtl.jsp?id=95079593) 2017.12.15.
  38. Narita, K., T. Mikami, H. Sugawara, T. Honjo, K. Kimura, and N. Kuwata, 2004: Cool-island and cold air-seeping phenomena in an urban park, Shinjuku Gyoen, Tokyo. Geographical Review of Japan 77(6), 403-420. https://doi.org/10.4157/grj.77.403
  39. Oh, K. S., and Hong, J. J., 2005: The relationship between urban spatial elements and the urban heat island effect. Urban Design Institute of Korea 6(1), 47-63.
  40. Padmanabhamurty, B., 1991. Microclimates in tropical urban complexes. Energy and Buildings 15(1), 83-92.
  41. Pielke, R. A., G. Marland, R. A. Betts, T. N. Chase, J. L. Eastman, J. O. Niles, D. D. S. Niyogi, and S. W. Running, 2002: The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effects of greenhouse gases. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 360(1797), 1705-1719. https://doi.org/10.1098/rsta.2002.1027
  42. Potchter, O., P. Cohen, and A. Bitan, 2006: Climatic behavior of various urban parks during hot and humid summer in the Mediterranean city of Tel Aviv, Israel. International Journal of Climatology 26(12), 1695-1711. https://doi.org/10.1002/joc.1330
  43. Robine, J. M., S. L. K. Cheung, S. L. Roy, H. V. Oyen, C. Griffiths, J. P. Michel, and F. R. Herrmann, 2008: Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes rendus biologies 331(2), 171-178. https://doi.org/10.1016/j.crvi.2007.12.001
  44. Shashua-Bar, L., and M. E. Hoffman, 2000: Vegetation as a climatic component in the design of an urban street: an empirical model for predicting the cooling effect of urban green areas with trees. Energy and buildings 31(3), 221-235. https://doi.org/10.1016/S0378-7788(99)00018-3
  45. Tukey, J. W., 1949: One degree of freedom for non-additivity. Biometrics 5(3), 232-242. https://doi.org/10.2307/3001938
  46. Tukey, J. W., 1953: The problem of multiple comparisons. Unpublished manuscript, Princeton University, Princeton, NJ.
  47. Upmanis, H., I. Eliasson, and S. Linqvist, 1998: The influence of green areas on nocturnal temperatures in a high latitude city(Goteborg, Sweden). International journal of climatology 18(6), 681-700. https://doi.org/10.1002/(SICI)1097-0088(199805)18:6<681::AID-JOC289>3.0.CO;2-L
  48. Wang, M., H. C. Chang, J. R. Merrick, and M. Amati, 2016: Assessment of solar radiation reduction from urban forests on buildings along highway corridors in Sydney. Urban Forestry & Urban Greening 15, 225-235. https://doi.org/10.1016/j.ufug.2016.01.003
  49. Xu, X., C. Yi, L. Montagnani, and E. Kutter, 2017: Numerical study of the interplay between thermo-topographic slope flow and synoptic flow on canopy transport processes. Agricultural and Forest Meteorology.
  50. Yamamoto Y., 2006: Measures to mitigate urban heat islands. NISTEP Science & Technology Foresight Center.
  51. Yi C. Y., J. H. Eum, Y. J. Choi, K. R. Kim, D. Scherer, U. Fehrenbach, and G. H. Kim, 2011: Development of Climate Analysis Seoul(CAS) maps based on landuse and meteorological model. Journal of the Korean Association of Geographic Information Studies 14(1), 12-25. https://doi.org/10.11108/kagis.2011.14.1.012
  52. Yilmaz, S., S. Toy, M. A. Irmak, and H. Yilmaz, 2007: Determination of climatic differences in three different land uses in the city of Erzurum, Turkey. Building and Environment 42(4), 1604-1612. https://doi.org/10.1016/j.buildenv.2006.01.017