DOI QR코드

DOI QR Code

Assessment of Liquefaction Potential Using Correlation between Shear Wave Velocity and Normalized LPI on Urban Areas of Seoul and Gyeongju

정규화LPI와 전단파 속도의 상관관계를 활용한 서울과 경주 지역 액상화 위험도 평가

  • 송영우 (서울대학교 건설환경공학부) ;
  • 정충기 (서울대학교 건설환경공학부) ;
  • 박가현 (경희대학교 사회기반시스템공학과) ;
  • 김민기 (서울대학교 건설환경공학부)
  • Received : 2017.12.08
  • Accepted : 2018.03.08
  • Published : 2018.04.01

Abstract

Recent earthquakes in Gyeongju and Pohang have raised interest in liquefaction in South Korea. Liquefaction, which is a phenomenon that excessive pore pressure is generated and the shear strength of soil is decreased by repeated loads such as earthquakes, causes severe problems such as ground subsidence and overturning of structures. Therefore, it is necessary to identify and prepare for the possibility of liquefaction in advance. In general, the possibility of liquefaction is quantitatively assessed using the Liquefaction Potential Index (LPI), but it takes a lot of time and effort for performing site response analysis which is essential for the liquefaction evaluation. In this study, a simple method to evaluate the liquefaction potential without executing the site response analysis in a downtown area with a lot of borehole data was proposed. In this simple method, the correlation between the average shear wave velocity of the target location ground and the LPI divided by thickness of liquefiable layer was established. And the applicable correlation equation for various rock outcrop accelerations were derived. Using the 104 boreholes information in Seoul, the correlation equation between LPI and the shear wave velocity (ground water level: 0m, 1m, 2m, 3m) is obtained and the possibility of liquefaction occurrence in Seoul and Gyeongju is evaluated. The applicability of the proposed simple method was verified by comparing the LPI values calculated from the correlation equation and the LPI values derived using the existing site response analysis. Finally, the distribution map of LPI calculated from the correlation was drawn using Kriging, a geostatistical technique.

최근 경주와 포항에서 발생한 지진으로 국내에서 액상화 현상에 대한 관심이 커지고 있다. 지반의 액상화는 포화된 상태에서 지진과 같은 동하중을 받았을 때 과잉간극수압이 발생하여 흙이 강도를 상실하고 물과 같이 거동하는 현상이며 지반 침하와 상부구조물의 전도와 같은 심각한 문제를 야기한다. 따라서 액상화 발생 가능성을 미리 파악하고 대비할 필요가 있다. 액상화의 발생 가능성과 액상화 피해 정도는 일반적으로 액상화 가능 지수(Liquefaction Potential Index, LPI)에 의해 정량적으로 평가된다. LPI의 계산은 시추공 별로 이루어지며 지반응답해석이 필수적인 작업으로 선행되어 많은 시간과 노력이 필요하다. 본 연구에서는 다양한 지하수위 분포를 가지는 넓은 지역의 액상화 평가를 간단히 수행할 수 있도록 전단파 속도와 LPI의 상관관계를 이용한 액상화 평가 방법을 제안하였다. 제안된 방법은 액상화 가능 층의 평균 전단파 속도(${\bar{V}}s^{\prime}liquefiable$)와 액상화 가능 층의 두께로 나누어 정규화한 정규화 LPI의 상관관계를 분석하여 지하수위 별로 다양한 암반노두가속도에 대해 적용 가능한 상관관계식을 제시하고 이용한다. 상관관계를 이용한 액상화 평가 방법의 적용성을 확인하기 위해 서울특별시의 104개 시추조사자료를 이용하여 지하수위 0m, 1m, 2m, 3m에 대해 상관관계식을 제시하였으며 제시한 상관관계식을 이용하여 서울특별시와 경주시의 액상화 발생 가능성을 평가하였다. 지반응답해석을 이용해 계산한 LPI와 상관관계식을 이용해 계산한 LPI를 비교하였으며 제안된 액상화 평가 방법의 적용성을 확인하였다. 마지막으로 제안된 액상화 평가 방법에 따라 결정된 LPI의 분포를 지구통계학적 기법인 크리깅을 통해 지도로 나타내었다.

Keywords

References

  1. Cho, H. I., Satish, M. and Kim, D. S. (2016). "Site classification and design response spectra for seismic code provisions." Journal of the earthquake engineering society of Korea, Vol. 20, No. 4, pp. 245-256 (in Korean). https://doi.org/10.5000/EESK.2016.20.4.245
  2. Choi, J. S., Shin, C. G., Kim, M. M. and Kim, S. I. (2003). "Case study on the assessment for liquefaction potential in a existing costal structure." Proceedings of 2003 KSCE Conference, Vol. 2003, No. 10, pp. 4070-4075 (in Korean).
  3. Chung, C. K., Kim, H. S. and S, C. G. (2014). "Real-time assessment framework of spatial liquefaction hazard in port areas considering site-specific seismic response." Computers and Geotechnics, Vol. 61, pp. 241-253. https://doi.org/10.1016/j.compgeo.2014.06.001
  4. Chung, J. W. and Rogers, J. D. (2011). "Simplified method for spatial evaluation of liquefaction potential in the St. Louis area." Journal Geotech. Geoenviron. Eng., Vol. 137, No. 5, pp. 505-515. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000450
  5. Chung, J. W. and Rogers, J. D. (2013). "Influence of assumed groundwater depth on mapping liquefaction potential." Environmental & Engineering Geoscience, Vol. 19, No. 4, pp. 377-389.
  6. Iwasaki, T., Tatsuoka, F., Tokida, K. and Yasuda, S. (1978). "A practical method for assessing soil liquefaction potential based on case studies at various site in Japan." 5th Japan Earthquake Engineering Symposium. Vol. II, pp. 641-648.
  7. Iwasaki, T., Tokida, K., Tatsuoka, F., Watanabe, S., Yasuda, S. and Sato, H. (1982). "Microzonation for soil liquefaction potential using simplified methods." Proceedings 3rd International Conference on Microzonation, Seattle, USA. pp. 1319-1330.
  8. Juang, C. H., Liu, C. N., Chen, C. H., Hwang, J. H. and Lu, C. C. (2008). "Calibration of liquefaction potential index: A re-visit focusing on a new CPTU model." Engineering Geology, Vol. 102, No. 1-2, pp. 19-30. https://doi.org/10.1016/j.enggeo.2008.06.005
  9. Kim, H. S., Yoo, S. H., Jand, I. S. and Chung, C. K. (2012). "Realtime damage estimation for harbor site considering ground motion amplification characteristics." Journal of the Korean Geotechnical Society, Vol. 28, No. 5, pp. 55-65 (in Korean). https://doi.org/10.7843/kgs.2012.28.5.55
  10. Liao, S. C. and Whitman, R. V. (1986). "Overburden correction factors for SPT in sand." Journal Geotechnical Eng., Vol. 112, No. 3, pp. 373-377. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:3(373)
  11. Luna, R. and Frost, J. D. (1998). "Spatial liquefaction analysis system." Journal Comput. Civil. Eng., Vol. 12, No. 1, pp. 48-56. https://doi.org/10.1061/(ASCE)0887-3801(1998)12:1(48)
  12. Ministry of Land, Infrastructure and Transport (MLIT) (2017), Urban railway seismic design criteria (in Korean), 29-40.
  13. Park, S. S. and Kim, Y. S. (2013). "Liquefaction resistance of sands containing plastic fines with different plasticity." Journal of geotechnical and geoenvironmental engineering, Vol. 139, No. 5, pp. 825-830.
  14. Rauch, A. F. (1998). Personal Communication. (As cited in Youd, et. al. (2001)).
  15. Seo, M. W., Scott, M. O., Sun, C. G. and Oh, M. H. (2012). "Evaluation of liquefaction potential index along western coast of South Korea using SPT and CPT." Marine Georesources and Geotechnology, Vol. 30, No. 3, pp. 234-260. https://doi.org/10.1080/1064119X.2011.614322
  16. Sitharam, T. G., GovindarRaju. L. and Murthy, B. R. S. (2004). "Evaluation of liquefaction potential and dynamic properties of silty sand using cyclic triaxial testing." Geotechnical Testing Journal, Vol. 27, No. 5, pp. 423-429.
  17. Sun, C. G. (2004). Geotechnical information system and site amplification characteristics for earthquake ground motions at inland of the Korean peninsula, Ph.D. dissertation, Seoul National University, Seoul, Korea.
  18. Sun, C. G., Cho, C. S., Son, M. and Shin, J. S. (2013). "Correlations between shear wave velocity and in-situ penetration test results for Korean soil deposits." Pure Appl. Geophys, Vol. 170, No. 3, pp. 271-281. https://doi.org/10.1007/s00024-012-0516-2
  19. Sun, C. G., Kim, H. J. and Chung, C. K. (2008). "Deduction of correlations between shear wave velocity and geotechnical in-situ penetration test data." Journal of the Earthquake Engineering Society of Korea, Vol. 12, No. 4, pp. 1-10. https://doi.org/10.5000/EESK.2008.12.4.001
  20. Youd, T. L. and Idriss, I. M. (2001). "Liquefaction resistance of Soils: summary report from 1996 NCEER and 1998NCEER/NSF workshop on evaluation of liquefaction resistance of soil." Journal Geotech. Geoenviron. Eng., Vol. 127, No. 4, pp. 297-313. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:4(297)