DOI QR코드

DOI QR Code

Prediction Skill of East Asian Precipitation and Temperature Associated with El Niño in GloSea5 Hindcast Data

GloSea5의 과거기후 모의자료에서 나타난 El Niño와 관련된 동아시아 강수 및 기온 예측성능

  • Lim, So-Min (Earth System Research Division, National Institute of Meteorological Sciences) ;
  • Hyun, Yu-Kyung (Earth System Research Division, National Institute of Meteorological Sciences) ;
  • Kang, Hyun-Suk (Earth System Research Division, National Institute of Meteorological Sciences) ;
  • Yeh, Sang-Wook (Department of Marine Sciences and Convergent Technology, Hanyang University)
  • 임소민 (국립기상과학원 지구시스템연구과) ;
  • 현유경 (국립기상과학원 지구시스템연구과) ;
  • 강현석 (국립기상과학원 지구시스템연구과) ;
  • 예상욱 (한양대학교 해양융합공학과)
  • Received : 2017.11.10
  • Accepted : 2018.02.02
  • Published : 2018.03.31

Abstract

In this study, we investigate the performance of Global Seasonal Forecasting System version 5 (GloSea5) in Korea Meteorological Administration on the relationship between El $Ni{\tilde{n}}o$ and East Asian climate for the period of 1991~2010. It is found that the GloSea5 has a great prediction skill of El $Ni{\tilde{n}}o$ whose anomaly correlation coefficients of $Ni{\tilde{n}}o$ indices are over 0.96 during winter. The eastern Pacific (EP) El $Ni{\tilde{n}}o$ and the central Pacific (CP) El $Ni{\tilde{n}}o$ are considered and we analyze for EP El $Ni{\tilde{n}}o$, which is well simulated in GloSea5. The analysis period is divided into the developing phase of El $Ni{\tilde{n}}o$ summer (JJA(0)), mature phase of El $Ni{\tilde{n}}o$ winter (D(0)JF(1)), and decaying phase of El $Ni{\tilde{n}}o$ summer (JJA(1)). The GloSea5 simulates the relationship between precipitation and temperature in East Asia and the prediction skill for the East Asian precipitation and temperature varies depending on the El $Ni{\tilde{n}}o$ phase. While the precipitation and temperature are simulated well over the equatorial western Pacific region, there are biases in mid-latitude region during the JJA(0) and JJA(1). Because the low level pressure, wind, and vertical stream function are simulated weakly toward mid-latitude region, though they are similar with observation in low-latitude region. During the D(0)JF(1), the precipitation and temperature patterns analogize with observation in most regions, but there is temperature bias in inland over East Asia. The reason is that the GloSea5 poorly predicts the weakening of Siberian high, even though the shift of Aleutian low is predicted. Overall, the predictability of precipitation and temperature related to El $Ni{\tilde{n}}o$ in the GloSea5 is considered to be better in D(0)JF(1) than JJA(0) and JJA(1) and better in ocean than in inland region.

Keywords

References

  1. Adler, R. F., and Coathors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present). J. Hydrometeor., 4, 1147-1167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.
  2. Alexander, M. A., I. Blade, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: the influence of ENSO teleconnections on airsea interaction over the global oceans. J. Climate., 15, 2205-2231, doi:10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.
  3. Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Nino Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.
  4. Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677-699, doi:10.5194/gmd-4-677-2011.
  5. Brown, A., S. Milton, M. Cullen, B. Golding, J. Mitchell, and A. Shelly, 2012: Unified modeling and prediction of weather and climate: A 25-year journey. Bull. Amer. Meteor. Soc., 93, 1865-1877, doi:10.1175/BAMS-D-12-00018.1.
  6. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597, doi:10.1002/qj.828.
  7. Ho, C.-H., W. Choi, J. Kim, M.-K. Kim, and H.-D. Yoo, 2016: Does El Nino-Southern Oscillation affect the precipitation in Korea on seasonal time scales? Asia-Pac. J. Amos. Sci., 52, 395-403, doi:10.1007/s13143-016-0016-x.
  8. Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the southern oscillation. Mon. Wea. Rev., 109, 813-829, doi:10. 1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2. https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2
  9. Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos sea ice model documentation and software user's manual, Version 4.1, LA-CC-06-012. Technical report, Los Alamos National Laboratory, N.M, 116 pp.
  10. Imada, Y., H. Tatebe, M. Ishii, Y. Chikamoto, M. Mori, M. Arai, M. Watanabe, and M. Kimoto, 2015: Predictability of two types of El Nino assessed using an extended seasonal prediction system by MIROC. Mon. Wea. Rev., 143, 4597-4617, doi:10.1175/MWRD-15-0007.1.
  11. Jeong, H.-I., and Coauthors, 2012: Assessment of the APCC coupled MME suite in predicting the distinctive climate impacts of two flavors of ENSO during boreal winter. Climate Dyn., 39, 475-493, doi:10.1007/s00382-012-1359-3.
  12. Jeong, J.-H., and Coauthors, 2017: The status and prospect of seasonal climate prediction of climate over Korea and East Asia: A review. Asia-Pac. J. Atmos. Sci., 53, 149-173, doi:10.1007/s13143-017-0008-5.
  13. Jhun, J.-G., and E.-J. Lee, 2004: A new East Asian winter monsoon index and associated characteristics of the winter monsoon. J. Climate, 17, 711-726, doi:10.1175/1520-0442(2004)017<0711:ANEAWM>2.0.CO;2.
  14. Jung, M.-I., S.-W. Son, J. Choi, and H.-S. Kang, 2015: Assessment of 6-month lead prediction skill of the GloSea5 hindcast experiment. Atmosphere, 25, 323-337, doi:10.14191/Atmos.2015.25.2.323 (in Korean with English abstract).
  15. Kang, I.-S., and Y.-K. Jeong, 1996: Association of interannual variations of temperature and precipitation in Seoul with principal modes of pacific SST. Asia-Pac. J. Atmos. Sci., 32, 339-345.
  16. Kim, H.-M., P. J. Webster, and J. A. Curry, 2012: Seasonal prediction skill of ECMWF System 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere Winter. Climate Dyn., 39, 2957-2973, doi:10.1007/s00382-012-1364-6.
  17. Kim, J.-S., J.-S. Kug, S.-W. Yeh, H.-K. Kim, and E.-H. Park, 2014: Relation between climate variability in Korea and two types of El Nino, and their sensitivity to definition of two types of El Nino. Atmosphere, 24, 89-99, doi:10.14191/Atmos.2014.24.1.089.
  18. Kim, S., H.-S. Kim, S.-K. Min, H.-Y. Son, D.-J. Won, H.-S. Jung, and J.-S. Kug, 2015: Intra-winter atmospheric circulation changes over East Asia and North Pacific associated with ENSO in a seasonal prediction model. Asia-Pac. J. Atmos. Sci., 51, 49-60, doi:10.1007/s13143-014-0059-9.
  19. Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Nino events: Cold tongue El Nino and warm pool El Nino. J. Climate, 22, 1499-1515, doi:10.1175/2008JCLI2624.1.
  20. Lee, J.-Y., and Coauthors, 2017: The long-term variability of Changma in the East Asian summer monsoon system: A review and revisit. Asia-Pac. J. Atmos. Sci., 53, 257-272, doi:10.1007/s13143-017-0032-5.
  21. MacLachlan, C., and Coauthors, 2014: Global Seasonal Forecast System version 5 (GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 1072-1084, doi:10.1002/qj.2396.
  22. Madec, G., 2008: NEMO ocean engine. Note du Pole de modelisation. Institut Pierre-Simon Laplace (IPSL), France, 27.
  23. Min, S.-K., and Coauthors, 2015: Changes in weather and climate extremes over Korea and possible causes: A review. Asia-Pac. J. Atmos. Sci., 51, 103-121, doi:10.1007/s13143-015-0066-5.
  24. Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Nino. Mon. Wea. Rev., 110, 354-384, doi:10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.
  25. Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.
  26. Ren, H.-L., and F.-F. Jin, 2011: Nino indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, doi:10.1029/2010GL046031.
  27. Shen, S., and K.-M. Lau, 1995: Biennial oscillation associated with the East Asian summer monsoon and tropical sea surface temperatures. J. Meteor. Soc. Japan, 73, 105-124, doi:10.2151/jmsj1965.73.1_105.
  28. Son, H.-Y., J.-Y. Park, and J.-S. Kug, 2016: Precipitation variability in September over the Korean Peninsula during ENSO developing phase. Climate. Dyn., 46, 3419-3430, doi:10.1007/s00382-015-2776-x.
  29. Trenberth, K. E., and D. J. Shea, 2005: Relationships between precipitation and surface temperature. Geophys. Res. Lett., 32, L14703, doi:10.1029/2005GL022760.
  30. Walters, D. N., and Coauthors, 2011: The Met Office Unified Model global atmosphere 3.0/3.1 and JULES global land 3.0/3.1 configurations. Geosci. Model Dev., 4, 919-941, doi:10.5194/gmd-4-919-2011.
  31. Wang, B., R. Wu, and X. Fu, 2000: Pacific-East Asian teleconnection: how does ENSO affect East Asian climate?. J. Climate, 13, 1517-1536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.
  32. Wang, B., R. Wu, and K.-M. Lau, 2001: Interannual Variability of Asian Summer Monsoon: Contrasts between the Indian and the Western North Pacific-East Asian Monsoons. J. Climate, 14, 4073-4090, doi:10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2.
  33. Wang, B., Z. Wu, J. Li, J. Liu, C.-P. Chang, Y. Ding, and G. Wu, 2008: How to measure the strength of the East Asian summer monsoon. J. Climate, 21, 4449-4463, doi:10.1175/2008JCLI2183.1.
  34. Wang, L., and W. Chen, 2010: How well do existing indices measure the strength of the East Asian winter monsoon?. Adv. Atmos. Sci., 27, 855-870, doi:10.1007/s00376-009-9094-3.
  35. Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877-926, doi:10.1002/qj.49711850705.
  36. Wang, L., V. O. Magana, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and prospects for prediction. J. Geophys. Res., 103, 14451-14510, doi:10.1029/97JC02719.
  37. Weng, H., K. Ashok, S. K. Behera, S. A. Rao, and T. Yamagata, 2007: Impacts of recent El Nino Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn., 29, 113-129, doi:10.1007/s00382-007-0234-0.
  38. Weng, H., S. K. Behera, and T. Yamagata, 2009: Anomalous winter climate conditions in the Pacific rim during recent El Nino Modoki and El Nino events. Climate Dyn., 32, 663-674, doi:10.1007/s00382-008-0394-6.
  39. Wu, R., Z.-Z. Hu, and B. P. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 3742-3758, doi:10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2.
  40. Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman, and F.-F. Jin, 2009: El Nino in a changing climate. Nature, 461, 511-514, doi:10.1038/nature08316.
  41. Yeo, S.-R., S.-W. Yeh, Y. Kim, and S.-Y. Yim, 2017: Monthly climate variation over Korea in relation to the two types of ENSO evolution. Int. J. Climatol., 38, 811-824, doi:10.1002/joc.5212.
  42. Yuan, Y., and S. Yang, 2012: Impacts of different types of El Nino on the East Asian climate: focus on ENSO cycles. J. Climate, 25, 7702-7722, doi:10.1175/JCLID-11-00576.1.
  43. Zhang, R., A. Sumi, and M. Kimoto, 1996: Impact of El Nino on the East Asian monsoon: A diagnostic study of the '86/87 and '91/92 events. J. Meteor. Soc. Japan, 74, 49-62, doi:10.2151/jmsj1965.74.1_49.