DOI QR코드

DOI QR Code

Antifungal Activity of Agro-Materials against Pear Scab (Venturia nashicola) and Pear Rust (Gymnosporangium asiaticum) Fungi

배검은별무늬병균과 배붉은별무늬병균에 대한 유기농자재들의 항균활성

  • Song, Janghoon (Pear Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Seo, Ho-Jin (Pear Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • 송장훈 (농촌진흥청 국립원예특작과학원 배연구소) ;
  • 서호진 (농촌진흥청 국립원예특작과학원 배연구소)
  • Received : 2017.12.20
  • Accepted : 2018.02.08
  • Published : 2018.03.31

Abstract

This study was conducted to evaluate the antifungal activity of 19 agro-materials that have been registered for organic cultivation in Korea, after inoculation of pear leaves with Venturia nashicola and Gymnosporangium asiaticum. In V. nashicola, most of the nine agro- materials containing sulfur and copper completely inhibited spore germination, and some of the spores that germinated did not form appressoria. However, in only lime sulfur, Neobordeaux (cupric sulfate), and Wheengaris (sulfur)showed antifungal activity against G. asiaticum. Among the agro-materials containing plant extracts, Wheengarujaba (wood vinegar+spirits+rhubarb) inhibited conidial germination in V. nashicola and G. asiaticum by 100% and 71.6%, respectively. Among the agro-materials containing antifungal microorganisms, Cheongotan (Streptomyces griseus) reduced spore germination rate of V. nashicola to 88.8%; moreover, formation of appressoria or intracellular accumulation was not observed. Application of Topsid (Paenibacillus polymyxa) reduced spore germination rates in V. nashicola and G. asiaticum to 71.0% and 90.6%, respectively, and the formation of appressoria was not observed. Studying the antifungal activity of agro-materials because of cumulative applications under the field conditions is necessary, owing to their contact fungicidal effect and the induced-resistance by microbial metabolites and natural compounds.

본 연구는 무기살균제, 식물추출물, 미생물 등 우리나라에 등록된 병해관리용 유기농자재 중 19종에 대해 배검은별무늬병균과 배붉은별무늬병균을 접종하고 배 잎 조직에서의 항균활성을 확인하고자 수행하였다. 배검은별무늬병균에 대해 황, 구리 등이 함유된 유기농자재 9종 중에서 대부분은 포자발아를 완전히 억제하였고, 일부 발아한 포자의 경우에도 부착기가 전혀 형성되지 않았으나 배붉은별무늬병균에 대해서는 석회황합제, 네오보르도, 흰가리스 등에 한하여 항균활성을 보였다. 식물추출물을 함유하는 유기농자재 중 흰가루자바는 배 검은 별무늬병균의 분생포자 발아를 완전하게 억제하였으며 배 붉은별무늬병균에 대해서도 71.6% 수준으로 비교적 높은 포자발아 억제효과를 보였다. 미생물 함유 제제로써 청고탄(Streptomyces griseus)은 배검은별무늬병균에 대해 88.8%의 포자발아억제율을 보이고 부착기도 형성하지 않으며 세포간에 자재집적이 확인되지 않았다. 탑시드(Paenibacillus polymyxa)는 배검은별무늬병균과 배 붉은별무늬병균에 대해 포자발아억제율이 각각 71.0%와 90.6% 수준이며 부착기형성도 이뤄지지 않았다. 향후 직접적인 접촉으로 인하여 발생되는 보호효과뿐만 아니라 미생물 대사산물과 천연화합물이 지니고 있는 유도저항성 효과도 고려하여 포장조건에서 누적적으로 살포하면서 종합적인 항균활성을 검토할 필요가 있다.

Keywords

References

  1. Albo, A. G. and Nebbia, C. 2004. Incidence of poisoning in domestic carnivores in Italy. Veter. Res. Commun. 28: 83-88. https://doi.org/10.1023/B:VERC.0000045383.84386.77
  2. Beatty, P. H. and Jensen, S. E. 2002. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can. J. Microbiol. 48: 159-169. https://doi.org/10.1139/w02-002
  3. Choi, K. H., Lee, D. H., Song, Y. Y., Nam, J. C. and Lee, S. W. 2010. Current status on the occurrence and management of disease, insect and mite pests in non-chemical or organic cultured apple orchards in Korea. Korean J. Organic Agric. 18: 221-232. (In Korean)
  4. Cromwell, M. L., Berkett, L. P., Darby, H. M. and Ashikaga, T. 2011. Alternative organic fungicides for apple scab management and their non-target effects. Hortscience 46: 1254-1259.
  5. Ghorbany, M., Jafarpour, B. and Rastegar, M. F. 2010. Application of some plant products to control of Fusarium oxysporum f.sp. cumini causing cumin wilt. J. Plant Prot. 24: 1.
  6. Goy, R. C., Britto, D. and Assis, O. B. G. 2009. A review of the antimicrobial activity of chitosan. Polimeros 19: 241-247.
  7. Hiroshi, K. S. 1989. Diseases of Fruit Trees. Yokendo, Tokyo, Japan. pp. 240-253. (In Japanese)
  8. Holb, I. J. 2008. Timing of first and final sprays against apple scab combined with leaf removal and pruning in organic apple production. Crop Prot. 27: 814-822. https://doi.org/10.1016/j.cropro.2007.11.009
  9. Holdsworth, R. P. 1972. European red mite and its major predators: effect of sulfur. J. Econ. Entomol. 65: 1098-1099.
  10. Lim, K. H., Choi, H. S., Kwon, O. D., Kang, S. S., Yim, S. H., Kim, Y. K. et al. 2012. Evaluation of potential nutrient contribution of overwintering cover crops in organic orchards. Korean J. Organic Agric. 20:173-183. (In Korean)
  11. Jamar, L., Cavalier, M. and Lateur, M. 2010. Primary scab control using a 'during infection' spray timing and the effect on fruit quality and yield in organic apple production. Biotechnol. Agron. Soc. Environ. 14: 423-439.
  12. Jiang, S., Park, P. and Ishii, H. 2007. Ultrastructural study on scab resistance expressed in epidermal pectin layers of pear leaves. J. Gen. Plant Pathol. 73: 314-323. https://doi.org/10.1007/s10327-007-0034-8
  13. Kiss, L., Russell, J. C., Szentivanyi, O., Xu, X. and Jeffries, P. 2004. Biology and biocontrol potential of Ampelomyces mycoparasites, natural antagonists of powdery mildew fungi. Biocontrol Sci. Technol. 14: 635-651. https://doi.org/10.1080/09583150410001683600
  14. Lee, S. H., Cho, Y. E., Park, S. H., Balaraju, K., Park, J. W., Lee, S. W. et al. 2013. An antibiotic fusaricidin: a cyclic depsipeptide from Paenibacillus polymyxa E681 induces systemic resistance against Phytophthora blight of red-pepper. Phytoparasitica 41: 49-58. https://doi.org/10.1007/s12600-012-0263-z
  15. Liberato, J. R., Barreto, R. W. and Shivas, R. G. 2005. Leaf-clearing and staining techniques for the observation of conidiophores in the Phyllactinioideae (Erysiphaceae). Australas. Plant Pathol. 34: 401-404. https://doi.org/10.1071/AP05027
  16. MacHardy, W. E. and Gadoury, D. M. 1989. A revision of Mill's criteria for predicting apple scab infection periods. Phytopathology 79: 304-310. https://doi.org/10.1094/Phyto-79-304
  17. Mires, C. W. and Richardson, E. A. 1989. Ultrastructure of appressorium development by basidiospore germlings of the rust fungus Gymnosporangium juniperi-virginianae. Protoplasma 148: 111-119. https://doi.org/10.1007/BF02079330
  18. Ohata, K., Araki, T., Kiso, A., Kudo, A. and Takahashi, H. 1995. Methods for Isolation, Cultivation, Inoculation of Plant Pathogens. Japan Plant Protection Association. pp. 235-236.
  19. OIECC. 2009. National Standard for Organic and Bio-Dynamic Produce. 3.4 ed. Organic Industry Export Consultative Committee, Canberra, ACT, Australia. 4 pp.
  20. Oramahi, H. A. and Yoshimura, T. 2013. Antifungal and antitermitic activities of wood vinegar from Vitex pubescens Vahl. J. Wood Sci. 59: 344-350. https://doi.org/10.1007/s10086-013-1340-8
  21. Oruc, H. H., Cengiz, M. and Beskaya, H. 2009. Chronic copper toxicosis in sheep following the use of copper sulfate as a fungicide on fruit trees. J. Vet. Diagn. Invest. 21: 540-543. https://doi.org/10.1177/104063870902100420
  22. Park, P., Ishii, H. Adachi, Y., Kanematsu, S. Ieki, H. and Umemoto, S. 2000. Infection behavior of Venturia nashicola, the cause of scab on Asian pears. Phytopathology 90: 1209-1216. https://doi.org/10.1094/PHYTO.2000.90.11.1209
  23. Percival, G. C. 2010. Effect of systemic inducing resistance and biostimulant materials on apple scab using a detached leaf bioassay. Arboriculture & Urban Forestry 36: 41-46.
  24. Percival, G. C. and Boyle, S. 2009. Evaluation of film forming polymers to control apple scab (Venturia inaequalis (Cooke) G. Wint.) under laboratory and field conditions. Crop Prot. 28: 30-35. https://doi.org/10.1016/j.cropro.2008.08.005
  25. Polar, P., Kairo, M. T. K., Peterkin, D., Moore, D., Pegram, R. and John, S. A. 2005. Assessment of fungal isolates for development of a myco-acaricide for cattle tick control. Vector Borne Zoonotic Dis. 5: 276-284.
  26. Portz, D., Koch, E. and Slusarenko, A. J. 2008. Effects of garlic (Allium sativum L.) juice containing allicin on Phytophthora infestans (Mont. de Bary) and on downy mildew of cucumber caused by Pseudoperonospora cubensis (Berk. & M. A. Curtis) Rostovzev. Eur. J. Plant Pathol. 122: 197-206. https://doi.org/10.1007/s10658-008-9334-x
  27. Raza, W., Yang, W. and Shen, Q. R. 2008. Paenibacillus polymyxa: antibiotics, hydrolytic enzymes and hazard assessment. J. Plant Pathol. 90: 403-414.
  28. Rizk, M., Abdel-Rahman, T. and Metwally, H. 2007. Antibiotics production by Streptomyces lavendulae under different cultural conditions. J. Food Agric. Environ. 5: 412-415.
  29. Rural Development Administration. 2014. List of agricultural chemicals registered for organic products quality management. URL http://www.rda.go.kr/
  30. Shahidi, F., Arachchi, J. K. V. and Jeon, Y. J. 1999. Food applications of chitin and chitosans. Trends Food Sci. Technol. 10: 37-51. https://doi.org/10.1016/S0924-2244(99)00017-5
  31. Song, J. H., Lim, K. H., Cho, Y. S. and Lee, H. C. 2013. Current status of pest management and biodiversity in organic pear orchards in Korea. Korean J. Organic Agric. 21: 617-627. (In Korean) https://doi.org/10.11625/KJOA.2013.21.4.617
  32. Stangarlin, J. R., Kuhn, O. J., Assi, L. and Schwan-Estrada, K. R. F. 2011. Control of plant diseases using extracts from medicinal plants and fungi. In: Science against Microbial Pathogens: Communicating Current Research and Technological Advances, ed. by A. Mendez-Vilas, pp. 1033-1042. Formatex Research Center, Badajoz, Spain.
  33. Velmurugan, N., Han, S. S. and Lee, Y. S. 2009. Antifungal activity of neutralized wood vinegar with water extracts of Pinus densiflora and Quercus serrata saw dusts. Int. J. Environ. Res. 3: 167-176.
  34. Whiffen, A. J. 1948. The production, assay, and antibiotic activity of actidione, an antibiotic from Streptomyces griseus. J. Bacteriol. 56: 283.
  35. Wilson, C. L., Solar, J. M., Ghaouth, A. E. and Wisniewski, M. E. 1997. Rapid evaluation of plant extracts and essential oils for antifungal activity against Botrytis cinerea. Plant Dis. 81: 204-210.
  36. Yepes, L. M. and Aldwinckle, H. S. 1993. Selection of resistance to Venturia inaequalis using detached leaves from in vitro-grown apple shoots. Plant Sci. 93: 211-216. https://doi.org/10.1016/0168-9452(93)90051-Z
  37. Zare, R. and Gams, W. 2001. A revision of Verticillium section Prostrata. IV. The genera Lecanicillium and Simplicillium gen. nov. Nova Hedwigia 73: 1-50.