DOI QR코드

DOI QR Code

The development of anti-DR4 single-chain Fv (ScFv) antibody fused to Streptavidin

Streptavidin이 융합된 DR4 항원에 특이적인 single-chain Fv 항체의 개발

  • Kim, Seo Woo (Division of Biohealth Science, College of Natural Sciences, Changwon National University) ;
  • Wu, Sangwook (Department of Physics, College of Natural Sciences, Pukyong National University) ;
  • Kim, Jin-Kyoo (Division of Biohealth Science, College of Natural Sciences, Changwon National University)
  • 김서우 (창원대학교 자연과학대학 생명보건학부) ;
  • 우상욱 (부경대학교 자연과학대학 물리학과) ;
  • 김진규 (창원대학교 자연과학대학 생명보건학부)
  • Received : 2018.09.05
  • Accepted : 2018.10.09
  • Published : 2018.12.31

Abstract

The Streptavidin and Biotin system has been studied most extensively as the high affinity non-covalent binding of Biotin to STR ($K_D=10^{-14}M$) and four Biotin binding sites in tetrameric Streptavidin makes this system useful for the production of multivalent antibody. For the application of this system, we cloned Streptavidin amplified from Streptomyces avidinii chromosome by PCR and fused to gene of hAY4 single-chain Fv antibody specific to death receptor 4 (DR4) which is a receptor for tumor necrosis factor ${\alpha}$ related apoptosis induced ligand. The hAY4 single-chain Fv antibody fused to Streptavidin expressed in Escherichia coli showed 43 kDa monomer in heated SDS-PAGE. However, this fusion protein shown in both non-heated SDS-PAGE and Size-exclusion chromatography exhibited 172 kDa as a tetramer suggesting that natural tetramerization of Streptavidin by non-covalent association induced hAY4 single-chain Fv tetramerization. This fusion protein retained a Biotin binding activity similar to natural Streptavidin as shown in Ouchterlony assay and ELISA. Death receptor 4 antigen binding activity of purified hAY4 single-chain Fv fused to Streptavidin was also confirmed by ELISA and Westernblot. In addition, surface plasmon resonance analysis showed 60-fold higher antigen binding affinity of the hAY4-STR than monomeric hAY4 ScFv due to tetramerization. In summary, hAY4 single-chain Fv fused to Streptavidin fusion protein was successfully expressed and purified as a soluble tetramer in E. coli and showed both Biotin and DR4 antigen binding activity suggesting possible production of bifunctional and tetrameric ScFv antibody.

Streptavidin (STR)과 Biotin system은 Biotin의 Streptavidin에 대한 높은 비공유 친화력(non-covalent affinity; $K_D=10^{-14}M$)과 4 Biotin 결합부위를 갖는 Streptavidin의 tetramer 구조로 인해 복수의 항원결합부위 및 복수의 항원특이성을 갖는 항체를 제조할 수 있기 때문에 가장 활발하게 연구되고 있다. 이 system을 활용하기 위해 우리는 Streptomyces avidinii 염색체 DNA로부터 PCR을 통해 Streptavidin (STR) 유전자를 증폭하고 이를 TRAIL (tumor necrosis factor ${\alpha}$ related apoptosis induced ligand) receptor인 death receptor 4 (DR4)에 특이적으로 결합하는 hAY4 single-chain Fv 항체유전자에 융합시켰다. 대장균에서 발현시킨 STR에 융합된 hAY4 ScFv (hAY4-STR) 항체는 가열시킨 SDS-PAGE에서 43 kDa monomer를 나타내었다. 그러나 가열하지 않은 SDS-PAGE와 Size-exclusion chromatography에서는 tetramer인 172 kDa을 나타내었는데 이는 hAY4 ScFv-STR 항체가 STR의 자연적인 비공유결합에 의해 유도된 tetramer를 형성하고 있음을 나타내고 있다. 본 융합 단백질은 Ouchterlony assay와 ELISA에서 보여주는 것처럼 자연 Streptavidin과 유사한 Biotin 결합력을 유지하고 있었다. ELISA와 Westernblot을 이용하여 정제된 hAY4-STR 융합항체의 DR4 항원결합력 또한 확인하였다. 게다가 표면 플라즈몬 공명(surface plasmon resonance) 분석에서 hAY4 ScFv-STR tetramer는 tetramerization에 의해 hAY4 ScFv monomer보다 60배 더 높은 항원결합력을 나타내었다. 요약하면 hAY4 ScFv-STR 융합단백질은 E. coli에서 soluble tetramer로 성공적으로 발현 및 정제되었으며 Biotin과 DR4 항원에 동시에 결합함을 보여 주었다. 이는 bifunctional and tetrameric ScFv 항체를 제조 할 수 있음을 제시해 주고 있다.

Keywords

MSMHBQ_2018_v54n4_330_f0001.png 이미지

Fig. 1. DNA gel analysis of DR4, Streptavidin, hAY4 ScFv and hAY4 ScFv-STR genes cloned into pUC 119 expression vector.

MSMHBQ_2018_v54n4_330_f0002.png 이미지

Fig. 2. Plasmid construction of Streptavidin, DR4, hAY4 ScFv and hAY4 hAY4-STR.

MSMHBQ_2018_v54n4_330_f0004.png 이미지

Fig. 3. SDS-PAGE analysis of soluble proteins expressed in E. coli.

MSMHBQ_2018_v54n4_330_f0005.png 이미지

Fig. 4. SDS-PAGE analysis of Streptavidin and hAY4 ScFv-STR using heating or non-heating condition to determine non-covalent tetramerization effect.

MSMHBQ_2018_v54n4_330_f0006.png 이미지

Fig. 5. Size exclusion chromatography (SEC).

MSMHBQ_2018_v54n4_330_f0007.png 이미지

Fig. 6. Ouchterlony assay and ELISA analysis to determine Biotin binding activity of Streptavidin and hAY4 ScFv-STR.

MSMHBQ_2018_v54n4_330_f0008.png 이미지

Fig. 7. ELISA analysis and Westernblot to determine antigen binding activity of hAY4 ScFv-STR.

MSMHBQ_2018_v54n4_330_f0009.png 이미지

Fig. 8. Surface plasmon resonance (SPR) analysis of hAY4 ScFv, STR and hAY4 ScFv-STR.

MSMHBQ_2018_v54n4_330_f0010.png 이미지

Fig. 9. 3D modeling of hAY4 ScFv-STR tetramer.

Table 1. Primers used for PCR amplification of DR4, Streptavidin, hAY4 ScFv, and hAY4 ScFv-Streptavidin genes

MSMHBQ_2018_v54n4_330_t0001.png 이미지

Table 2. Kinetic binding parameters for the interactions of hAY4 ScFv and hAY4 ScFv-STR with DR4 determined by SPR analysis

MSMHBQ_2018_v54n4_330_t0002.png 이미지

References

  1. Acchione M, Kwon H, Jochheim CM, and Atkins WM. 2012. Impact of linker and conjugation chemistry on antigen binding, Fc receptor binding and thermal stability of model antibody-drug conjugates. MAbs 4, 362-372. https://doi.org/10.4161/mabs.19449
  2. Adams GP, McCartney JE, Tai MS, Oppermann H, Huston JS, Stafford WF, Bookman MA, Fand I, Houston LL, and Weiner LM. 1993. Highly specific in vivo tumor targeting by monovalent and divalent forms of 741F8 anti-c-erbB-2 single-chain Fv. Cancer Res. 53, 4026-4034.
  3. Brinkmann U, Reiter Y, Jung SH, Lee B, and Pastan I. 1993. A recombinant immunotoxin containing a disulfide-stabilized Fv fragment. Proc. Natl. Acad. Sci. USA 90, 7538-7542. https://doi.org/10.1073/pnas.90.16.7538
  4. Cao Y, Christian S, and Suresh MR. 1998. Development of a bispecific monoclonal antibody as a universal immunoprobe for detecting biotinylated macromolecules. J. Immunol. Methods 220, 85-91. https://doi.org/10.1016/S0022-1759(98)00154-9
  5. Chang CH, Wang Y, Trisal P, Li R, Rossi DL, Nair A, Gupta P, Losman M, Cardillo TM, Rossi EA, et al. 2012. Evaluation of a novel hexavalent humanized anti-IGF-1R antibody and its bivalent parental IgG in diverse cancer cell lines. PLoS One 7, e44235. https://doi.org/10.1371/journal.pone.0044235
  6. Cooper HM and Patterson Y. 2008. Double-immunodiffusion assay for detecting specific-antibodies. Curr. Protoc. Immunol. 82, 2.3.1-2.3.3.
  7. Dubel S, Breitling F, Kontermann R, Schmidt T, Skerra A, and Little M. 1995. Bifunctional and multimeric complexes of streptavidin fused to single chain antibodies (scFv). J. Immunol. Methods 178, 201-209. https://doi.org/10.1016/0022-1759(94)00257-W
  8. Goshorn SC, Svensson HP, Kerr DE, Somerville JE, Senter PD, and Fell HP. 1993. Genetic construction, expression, and characterization of a single chain anti-carcinoma antibody fused to beta-lactamase. Cancer Res. 53, 2123-2127.
  9. Green NM. 1990. [5] Avidin and streptavidin, pp. 51-67. In Methods in enzymology. Vol. 184, Elsevier.
  10. Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotny J, Margolies MN, Ridge RJ, Bruccoleri RE, Haber E, Crea R, et al. 1988. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 85, 5879-5883. https://doi.org/10.1073/pnas.85.16.5879
  11. Huston JS, Mudgett-Hunter M, Tai MS, McCartney J, Warren F, Haber E, and Oppermann H. 1991. Protein engineering of single-chain Fv analogs and fusion proteins. Methods Enzymol. 203, 46-88.
  12. Kim JK, Tsen MF, Ghetie V, and Ward ES. 1994. Identifying amino acid residues that influence plasma clearance of murine IgG1 fragments by site-directed mutagenesis. Eur. J. Immunol. 24, 542-548. https://doi.org/10.1002/eji.1830240308
  13. Kipriyanov SM, Breitling F, Little M, and Dubel S. 1995. Single-chain antibody streptavidin fusions: tetrameric bifunctional scFvcomplexes with biotin binding activity and enhanced affinity to antigen. Hum. Antibodies Hybridomas 6, 93-101. https://doi.org/10.3233/HAB-1995-6303
  14. Koo K, Foegeding PM, and Swaisgood HE. 1998. Development of a streptavidin-conjugated single-chain antibody that binds Bacillus cereus spores. Appl. Environ. Microbiol. 64, 2497-2502.
  15. Le Gall F, Reusch U, Little M, and Kipriyanov SM. 2004. Effect of linker sequences between the antibody variable domains on the formation, stability and biological activity of a bispecific tandem diabody. Protein Eng. Des. Sel. 17, 357-366. https://doi.org/10.1093/protein/gzh039
  16. Lee SH, Park DW, Sung ES, Park HR, Kim JK, and Kim YS. 2010. Humanization of an agonistic anti-death receptor 4 single chain variable fragment antibody and avidity-mediated enhancement of its cell death-inducing activity. Mol. Immunol. 47, 816-824. https://doi.org/10.1016/j.molimm.2009.09.041
  17. Lei SP, Lin H, Wang SS, Callaway J, and Wilcox G. 1987. Characterization of the Erwinia carotovora pelB gene and its product pectate lyase. J. Bacteriol. 169, 4379-4383. https://doi.org/10.1128/jb.169.9.4379-4383.1987
  18. Liu JL, Zabetakis D, Lee AB, Goldman ER, and Anderson GP. 2013. Single domain antibody-alkaline phosphatase fusion proteins for antigen detection--analysis of affinity and thermal stability of single domain antibody. J. Immunol. Methods 393, 1-7. https://doi.org/10.1016/j.jim.2013.04.001
  19. Milenic DE, Yokota T, Filpula DR, Finkelman MA, Dodd SW, Wood JF, Whitlow M, Snoy P, and Schlom J. 1991. Construction, binding properties, metabolism, and tumor targeting of a singlechain Fv derived from the pancarcinoma monoclonal antibody CC49. Cancer Res. 51, 6363-6371.
  20. Park KJ, Park DW, Kim CH, Han BK, Park TS, Han JY, Lillehoj HS, and Kim JK. 2005. Development and characterization of a recombinant chicken single-chain Fv antibody detecting Eimeria acervulina sporozoite antigen. Biotechnol. Lett. 27, 289-295. https://doi.org/10.1007/s10529-005-0682-8
  21. Petrausch U, Dernedde J, Coelho V, Panjideh H, Frey D, Fuchs H, Thiel E, and Deckert PM. 2007. A33scFv-green fluorescent protein, a recombinant single-chain fusion protein for tumor targeting. Protein Eng. Des. Sel. 20, 583-590. https://doi.org/10.1093/protein/gzm043
  22. Reiter Y, Brinkmann U, Jung SH, Pastan I, and Lee B. 1995. Disulfide stabilization of antibody Fv: computer predictions and experimental evaluation. Protein Eng. 8, 1323-1331. https://doi.org/10.1093/protein/8.12.1323
  23. Reiter Y, Pai LH, Brinkmann U, Wang QC, and Pastan I. 1994. Antitumor activity and pharmacokinetics in mice of a recombinant immunotoxin containing a disulfide-stabilized Fv fragment. Cancer Res. 54, 2714-2718.
  24. Rossi EA, Goldenberg DM, Cardillo TM, Stein R, Wang Y, and Chang CH. 2008. Novel designs of multivalent anti-CD20 humanized antibodies as improved lymphoma therapeutics. Cancer Res. 68, 8384-8392. https://doi.org/10.1158/0008-5472.CAN-08-2033
  25. Skerra A and Pluckthun A. 1988. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240, 1038-1041. https://doi.org/10.1126/science.3285470
  26. Solar I and Gershoni JM. 1995. Linker modification introduces useful molecular instability in a single chain antibody. Protein Eng. 8, 717-723. https://doi.org/10.1093/protein/8.7.717
  27. Trinh R, Gurbaxani B, Morrison SL, and Seyfzadeh M. 2004. Optimization of codon pair use within the (GGGGS)3 linker sequence results in enhanced protein expression. Mol. Immunol. 40, 717-722. https://doi.org/10.1016/j.molimm.2003.08.006
  28. Venisnik KM, Olafsen T, Gambhir SS, and Wu AM. 2007. Fusion of Gaussia luciferase to an engineered anti-carcinoembryonic antigen (CEA) antibody for in vivo optical imaging. Mol. Imaging Biol. 9, 267-277. https://doi.org/10.1007/s11307-007-0101-8
  29. Venisnik KM, Olafsen T, Loening AM, Iyer M, Gambhir SS, and Wu AM. 2006. Bifunctional antibody-Renilla luciferase fusion protein for in vivo optical detection of tumors. Protein Eng. Des. Sel. 19, 453-460. https://doi.org/10.1093/protein/gzl030
  30. Volkel T, Korn T, Bach M, Muller R, and Kontermann RE. 2001. Optimized linker sequences for the expression of monomeric and dimeric bispecific single-chain diabodies. Protein Eng. 14, 815-823. https://doi.org/10.1093/protein/14.10.815
  31. Wang S, Zheng C, Liu Y, Zheng H, and Wang Z. 2008. Construction of multiform scFv antibodies using linker peptide. J. Genet. Genomics 35, 313-316. https://doi.org/10.1016/S1673-8527(08)60045-4
  32. Whitlow M, Bell BA, Feng SL, Filpula D, Hardman KD, Hubert SL, Rollence ML, Wood JF, Schott ME, Milenic DE, et al. 1993. An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability. Protein Eng. 6, 989-995. https://doi.org/10.1093/protein/6.8.989

Cited by

  1. Leucine zipper도메인의 융합에 의한 바이오시밀러 레미케이드 Single-chain Fv 항체의 항원 결합력 개선 vol.30, pp.11, 2018, https://doi.org/10.5352/jls.2020.30.11.1012