DOI QR코드

DOI QR Code

Characteristic study and optimization of culture conditions for Bacillus amyloliquefaciens SRCM 100731 as probiotic resource for companion animal

Bacillus amyloliquefaciens SRCM 100731의 반려 동물용 프로바이오틱스 소재로서의 특성 규명 및 배양 조건 최적화

  • Ryu, Myeong Seon (Microbial Institute for Fermentation Industry (MIFI)) ;
  • Yang, Hee-Jong (Microbial Institute for Fermentation Industry (MIFI)) ;
  • Jeong, Su-Ji (Microbial Institute for Fermentation Industry (MIFI)) ;
  • Seo, Ji Won (Microbial Institute for Fermentation Industry (MIFI)) ;
  • Ha, Gwangsu (Microbial Institute for Fermentation Industry (MIFI)) ;
  • Jeong, Seong-Yeop (Microbial Institute for Fermentation Industry (MIFI)) ;
  • Jeong, Do-Youn (Microbial Institute for Fermentation Industry (MIFI))
  • 류명선 ((재)발효미생물산업진흥원) ;
  • 양희종 ((재)발효미생물산업진흥원) ;
  • 정수지 ((재)발효미생물산업진흥원) ;
  • 서지원 ((재)발효미생물산업진흥원) ;
  • 하광수 ((재)발효미생물산업진흥원) ;
  • 정성엽 ((재)발효미생물산업진흥원) ;
  • 정도연 ((재)발효미생물산업진흥원)
  • Received : 2018.09.12
  • Accepted : 2018.10.04
  • Published : 2018.12.31

Abstract

The aim of this study is to screen the strains of Bacillus spp. possessing safety, probiotic activity, and so on, which can be utilized as probiotic resource for using the feed and supplement food of companion animal. About 300 isolates were isolated from traditional Korean sauces, four isolates that did not have or produce the six kinds of B. cereus type vomiting and diarrhea toxin genes, ${\beta}$-hemolytic, and three kinds of carcinogenic enzymes were selected. Antibiotic gene retention, cell surface hydrophobicity, antibiotic sensitivity, and glucose utilization were analyzed for four isolates, and finally SRCM 100731 was selected. SRCM 100731 was named as Bacillus amyloliquefaciens SRCM 100731 16S rRNA sequencing analysis, and carried out optimization of cell growth for industrial applications such as pet food and feed. The effects of 14 different components on cell growth were investigated and three significant positive factors, molasses, sodium chloride, and potassium chloride were selected as the main factors based on a Plackett-Burman design. In order to find out optimal concentration on each constituent, we carried out central composite design. The predicted optimized concentrations were 7% molasses, 1.1% sodium chloride, 0.5% potassium chloride. Finally, an overall about 7-fold increase in dry cell weight yield ($12.6625{\pm}0.0658g/L$) was achieved using the optimized medium compared with the non-optimized medium ($1.8273{\pm}0.0214g/L$). This research is expected to be highly utilized in the growing pet industry by establishing optimal cultivation conditions for industrial application as well as screening Bacillus amyloliquefaciens SRCM 100731 as probiotic resource for companion animal.

본 연구는 전통 발효식품에서 반려동물의 사료 및 보조식품 등에 사용될 수 있도록 안전성 확보와 프로바이오틱스 활성 등 기능성을 갖춘Bacillus 속 균주를 선발하고자 하였다. 전국에서 수집한 전통 장류에서 약 300종의 분리주를 확보하였고, Bacillus cereus가 생성하는 구토와 설사 독소 유전자 6종, ${\beta}$형 용혈성, 발암 관련 효소 3종 등을 보유하지 않거나 생성하지 않는 4종의 균주를 선별하였다. 4종의 분리주를 대상으로 항생물질 유전자 보유 여부, 세포 표면 소수성, 항생제 감수성과 당 이용성 등을 분석하였고, 최종적으로 항생물질 생성 유전자 3종을 모두 보유하고, 혈전 용해 및 세포 표면 소수성이 가장 우수한 SRCM 100731을 선정하였다. 최종 선별된 SRCM 100731의 16S rRNA 염기서열 분석 결과 Bacillus amyloliquefaciens로 동정 되었으며, 펫 사료 및 식품 등 산업적 적용을 위하여 균체 성장 최적화를 수행하였다. SRCM 100731의 배지 성분 선별을 위하여 Plackett-Burman design (PBD)을 사용하였으며, 최적 성장을 위한 배지 성분으로는 molasses와 sodium chloride, potassium chloride가 예측되었다. PBD를 통해 선정된 배지 성분의 농도를 최적화하기 위하여 central composite design (CCD)을 사용하였으며, 실험 결과 7.0% molasses, 1.1% sodium chloride, 0.5% potassium chloride로 예측되었다. 이때 최대 균체량은 12.6625 g/L로 예측되었으며, 최종적으로 실험 모델의 예측값과 실 측정값이 $12.6625{\pm}0.0658g/L$로 오차 범위내의 결과를 나타내어 실험 모델의 신뢰성을 검증할 수 있었다. 이는 실험 모델에 의해 예측된 최적 배지 사용 시 최적화 이전 배지에서의 균체량($1.8273{\pm}0.0214g/L$) 대비 약7배로 균체량이 증가함을 확인할 수 있었다. 향후 B. amyloliquefaciens SRCM 100731의 제품 개발 등 후속 연구의 진행이 필요하나 본 연구를 통해 산업 적용이 가능한 프로바이오틱스 소재의 발굴 및 산업화 배양 조건이 확립 되었으므로 앞으로 성장하고 있는 반려동물 산업에 유용하게 활용 될 수 있을 것으로 기대된다.

Keywords

MSMHBQ_2018_v54n4_384_f0001.png 이미지

Fig. 1. Cell surface hydrophobicity of selected strains.

MSMHBQ_2018_v54n4_384_f0002.png 이미지

Fig. 2. Phylogenetic tree based on 16S rRNA gene sequence of SRCM 100731 and Bacillus type strains.

MSMHBQ_2018_v54n4_384_f0003.png 이미지

Fig. 3. Growth profiling of B. amyloliquefaciens SRCM 100731 byabsorbance and dry cell weight.

MSMHBQ_2018_v54n4_384_f0004.png 이미지

Fig. 4. Effects of medium components depending on various levels for improving dry cell weight.

MSMHBQ_2018_v54n4_384_f0005.png 이미지

Fig. 5. Three-dimensional response surface plots for improving dry cell weight of B. amyloliquefaciens SRCM 100731.

MSMHBQ_2018_v54n4_384_f0006.png 이미지

Fig. 6. Dry cell weight comparison between control (LB, non-optimizedmedium) and optimized medium.

Table 1. Range of different variables for Plackett-Burman design (PBD) and response value (Y)

MSMHBQ_2018_v54n4_384_t0001.png 이미지

Table 2. Range of different variables for central composite design (CCD) and response value (Y)

MSMHBQ_2018_v54n4_384_t0002.png 이미지

Table 3. Comparison of safety and functional characterization for selected strains that isolated from traditional fermented products

MSMHBQ_2018_v54n4_384_t0003.png 이미지

Table 4. Carbohydrates and antibiotics susceptibility characterization of SRCM 100731

MSMHBQ_2018_v54n4_384_t0004.png 이미지

Table 5. Variables and their effects values from a quadratic regression equation results of Plackett-Burman design

MSMHBQ_2018_v54n4_384_t0005.png 이미지

Table 6. Analysis of variance (ANOVA) of central composite design for improving dry cell weight of B. amyloliquefaciens SRCM 100731

MSMHBQ_2018_v54n4_384_t0006.png 이미지

References

  1. Alanis AJ. 2005. Resistance to antibiotics: Are we in the post-antibiotic era? Arch. Med. Res. 36, 697-705. https://doi.org/10.1016/j.arcmed.2005.06.009
  2. An YH and Friedman RJ. 1998. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J. Biomed. Mater. Res. 43, 338-348. https://doi.org/10.1002/(SICI)1097-4636(199823)43:3<338::AID-JBM16>3.0.CO;2-B
  3. Astrup T and Mullertz S. 1952. The fibrin plate method for estimating fibrinolytic activity. Arch. Biochem. Biophys. 40, 346-351. https://doi.org/10.1016/0003-9861(52)90121-5
  4. Bae HC, Choi SH, Na SH, and Nam MS. 2012. Characteristics of ${\alpha}$-amylase and protease produced from Bacillus amyloliquefaciens CNL-90 isolated from malt grain. J. Anim. Sci. Technol. 54, 133-139. https://doi.org/10.5187/JAST.2012.54.2.133
  5. Baek SY, Yun HJ, Choi HS, Koo BS, and Yeo SH. 2010. Isolation and physiological characteristics of microorganisms producing extracellular enzymes from Korean traditional soybean sauce and soybean paste. Microbiol. Biotechnol. Lett. 38, 379-384.
  6. Buff PR, Carter RA, Bauer JE, and Kersey JH. 2014. Natural pet food: A review of natural diets and their impact on canine and feline physiology. J. Anim. Sci. 92, 3781-3791. https://doi.org/10.2527/jas.2014-7789
  7. Carrillo C, Teruel JA, Aranda FJ, and Ortiz A. 2003. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim. Biophys. Acta Biomembr. 1611, 91-97. https://doi.org/10.1016/S0005-2736(03)00029-4
  8. Danek P, Novak J, Semradova H, and Diblikova E. 1991. Administration of the probiotics Lactobacillus casei CCM 4160 to sows and its effects on piglet efficiency. Zivocisna Vryoba 36, 411-415.
  9. Doyle RJ and Rosenberg M. 1995. Measurement of microbial adhesion to hydrophobic substrata. Methods Enzymol. 253, 542-550.
  10. Earl AM, Losick R, and Kolter R. 2006. Bacillus subtilis genome diversity. J. Bacteriol. 189, 1163-1170.
  11. Fuller R. 1973. Ecological studies on the Lactobacillus flora associated with the crop epithelium of the fowl. J. Appl. Bacteriol. 36, 131-139. https://doi.org/10.1111/j.1365-2672.1973.tb04080.x
  12. Hibbert DB. 2012. Experimental design in chromatography: A tutorial review. J. Chromatogr. B 910, 2-13. https://doi.org/10.1016/j.jchromb.2012.01.020
  13. Hong HA, Huang JM, Khaneja R, Hiep LV, Urdaci MC, and Cutting SM. 2008. The safety of Bacillus subtilis and Bacillus indicus as food probiotics. J. Appl. Microbiol. 105, 510-520. https://doi.org/10.1111/j.1365-2672.2008.03773.x
  14. Jeong YM, Lee JH, Chung HJ, Chun GT, Yun SI, and Jeong YS. 2010. Optimization of medium and fermentation conditions for mass production of Bacillus licheniformis SCD121067 by statistical experimental design. KSBB J. 25, 539-546.
  15. Jeong SJ, Yang HJ, Jeong SY, and Jeong DY. 2015. Identification of characterization and statistical optimization of medium constituent for Bacillus subtilis SCJ4 isolated from Korean traditional fermented food. Korean J. Microbiol. 51, 48-60. https://doi.org/10.7845/kjm.2015.5004
  16. Kim DW, Chae SJ, Kim YH, Jung HJ, Lee SD, Park JC, Cho KH, Sa SJ, Kim IC, and Kim IH. 2013. Effects of prebiotics and probiotics on swine intestinal microflora and fermentation products in vitro fermentation. Korean J. Microbiol. 49, 24-29. https://doi.org/10.7845/kjm.2013.232
  17. Kim YS, Yun S, Jeong DY, Hahn KS, and Uhm TB. 2010. Isolation of Bacillus licheniformis producing antimicrobial agents against Bacillus cereus and its properties. Korean J. Microbiol. 46, 270-277.
  18. Lee S, Lee J, Jin YI, Jeong JC, Chang YH, Lee Y, Jeong Y, and Kim M. 2017. Probiotic characteristics of Bacillus strains isolated from Korean traditional soy sauce. LWT-Food Sci. Technol. 79, 518-524. https://doi.org/10.1016/j.lwt.2016.08.040
  19. Makkar RS and Cameotra SS. 1997. Utilization of molasses for biosurfactant production by two Bacillus strains at thermophilic conditions. J. Am. Oil Chem. Soc. 74, 887-889. https://doi.org/10.1007/s11746-997-0233-7
  20. Mohan B, Kadirvel R, Natarajan A, and Bhaskaran M. 1996. Effect of probiotic supplementation on growth, nitrogen utilisation and serum cholesterol in broilers. Br. Poult. Sci. 37, 395-401. https://doi.org/10.1080/00071669608417870
  21. Park S, Yoo J, Seong C, and Cho S. 2013. Isolation and characterization of Bacillus subtilis MP56 with antimicrobial activity against MDR (multi drug resistant) strains. Korean J. Microbiol. 49, 90-94. https://doi.org/10.7845/kjm.2013.017
  22. Sansawat A and Thirabunyanon M. 2009. Anti-aeromonas hydrophila activity and characterization of novel probiotic strains of Bacillus subtilis isolated from the gastrointestinal tract of giant freshwater prawns. Maejo Int. J. Sci. Technol. 3, 77-87.
  23. Son SJ, Bae JM, Park SJ, Lee HJ, and Lee HS. 2017. A new area of food industry; companion animal market. Food Sci. Ind. 50, 92-103.
  24. Stein T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56, 845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
  25. Tamura K and Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512-526.
  26. Thirabunyanon M and Thongwittaya N. 2012. Protection activity of a novel probiotic strain of Bacillus subtilis against Salmonella Enteritidis infection. Res. Vet. Sci. 93, 74-81. https://doi.org/10.1016/j.rvsc.2011.08.008
  27. Wang Y, Chen C, Cai D, Wang Z, and Qin P. 2016. The optimization of L-lactic acid production from sweet sorghum juice by mixed fermentation of Bacillus coagulans and Lactobacillus rhamnosus under unsterile conditions. Bioresour. Technol. 218, 1098-1105. https://doi.org/10.1016/j.biortech.2016.07.069
  28. Wu WJ and Ahn BY. 2011. Isolation and identification of Bacillus amyloliquefaciens BY01 with high productivity of menaquinone for Cheonggukjang production. J. Korean Soc. Appl. Biol. Chem. 54, 783-789. https://doi.org/10.1007/BF03253160
  29. Yanez-Mendizabal V, Vinas I, Usall J, Torres R, Solsona C, and Teixido N. 2012. Production of the postharvest biocontrol agent Bacillus subtilis CPA-8 using low cost commercial products and by-products. Biol. Control 60, 280-289. https://doi.org/10.1016/j.biocontrol.2011.12.001
  30. Yang HJ, Jeong SJ, Jeong SY, Heo JH, Choi NS, and Jeong DY. 2016. Screening of non-biogenic-amine-producing Bacillus subtilis and medium optimization for improving biomass by the response surface methodology. Korean J. Life Sci. 26, 571-583. https://doi.org/10.5352/JLS.2016.26.5.571
  31. Yang SJ, Lee DH, Park HM, Jung HK, Park CS, and Hong JH. 2014. Amylase activity and characterization of Bacillus subtilis CBD2 isolated from Doenjang. Korean J. Food Preserv. 21, 286-293. https://doi.org/10.11002/kjfp.2014.21.2.286
  32. Yu GY, Sinclair JB, Hartman GL, and Bertagnolli BL. 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem. 34, 955-963. https://doi.org/10.1016/S0038-0717(02)00027-5
  33. Yun HJ, Lee YJ, Yeo SH, Park HD, and Baek SY. 2013. Isolation and characterization of exopolysaccharide producing lactic acid bacteria from Korean soy sauce and soybean paste. Korean J. Microbiol. Biotechnol. 41, 190-197. https://doi.org/10.4014/kjmb.1302.02004

Cited by

  1. 화장품 소재로서 순창 베리류 유래 Sacchromyces cerevisiae FT4-4의 항산화 활성 및 미백 효과 vol.31, pp.2, 2018, https://doi.org/10.5352/jls.2021.31.2.175