DOI QR코드

DOI QR Code

Surface Modification of Nanofiltration Membrane with Silane Coupling Agents for Separation of Dye

실란 표면 개질된 나노복합막의 염료 분리 특성

  • Park, Hee Min (Department of Chemical Engineering, College of Engineering, Kyung Hee University) ;
  • Lim, Jee Eun (Department of Chemical Engineering, College of Engineering, Kyung Hee University) ;
  • Kim, Seong Ae (Department of Chemical Engineering, College of Engineering, Kyung Hee University) ;
  • Lee, Yong Taek (Department of Chemical Engineering, College of Engineering, Kyung Hee University)
  • 박희민 (경희대학교 공과대학 화학공학과) ;
  • 임지은 (경희대학교 공과대학 화학공학과) ;
  • 김성애 (경희대학교 공과대학 화학공학과) ;
  • 이용택 (경희대학교 공과대학 화학공학과)
  • Received : 2018.12.21
  • Accepted : 2018.12.28
  • Published : 2018.12.31

Abstract

In this study, the commercial nanofiltration membranes were modified with octyltrimethoxysilane(OcTMS) and (3-aminopropyl)trimethoxysilane (APTMS) to improve fouling resistance and to separate dye. The chemical structure and binding energy of elements of silane-deposited surface were analyzed using XPS analysis. And the morphology and hydrophilicity property of silane-modified NF membrane were analyzed using FE-SEM, EDX, AFM, and contact angle. The surface charge of silane-modified NF membrane was characterized by zeta potentiometer analyzer. As a result, silane-modified NF membrane improved fouling resistance about 2 times as compared with that of the commercial membrane. And the silane-modified NF membranes effectively were removed cation dye over 98%.

본 연구에서는 염색 염료 산업의 폐수 처리 및 재활용 공정에 분리막을 적용하고자 실란 커플링제를 이용하여 상용화된 나노복합막을 표면 개질하였다. 실란 커플링제는 말단 관능기가 다른 octyltrimethoxysilane (OcTMS)와 (3-aminopropyl) trimethoxysilane (APTMS)을 사용하였으며, 표면 개질을 통해 염료 분리 및 내오염성을 향상시키고자 하였다. XPS, FE-SEM, EDX 분석을 통하여 막 표면의 화학 구조 변화 및 실란 적층을 확인하였고, AFM 분석을 통해 개질막의 표면 모폴로지를 확인하였다. Zeta potential을 통해 실란 개질 막이 상용막 대비 표면 전하가 중성으로 변하는 것을 확인하였다. 그 결과, OcTMS와 APTMS로 개질한 막의 내오염성은 NE70에 비해 약 2배 이상 향상되었다. 또한, 실란으로 표면 개질한 나노복합막은 음이온 염료(Orange II) 용액에서 약 90% 이상, 양이온 염료(Safranin-O) 용액에서 약 98% 이상의 염료 제거율을 나타내어 양이온 염료 용액 처리에 적합한 것을 확인하였다.

Keywords

References

  1. E. Forgacs, T. Cserhati, and G. Oros, "Removal of synthetic dyes from waste water: A review", Environ. Int., 30, 953 (2004). https://doi.org/10.1016/j.envint.2004.02.001
  2. C. M. Caliell, S. J. Barclay, and C. A. Buckley, "Treatment of exhausted reactive dye bath effluent using anaerobic digestion: Laboratory and full scale trials", Wat. Res., 22, 225 (1996).
  3. T. Robinson, G. McMullan, R. Marchant, and P. Nigam, "Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative", Biores Technol., 77, 247 (2001). https://doi.org/10.1016/S0960-8524(00)00080-8
  4. I. H. Choi, S. M. Lee, I. C. Kim, B. R. Min, and K. H. Lee, "Effect of new photocatalytic coagulant on NF membrane fouling", Ind. Eng. Chem. Res., 46, 2280 (2007). https://doi.org/10.1021/ie060917s
  5. Y. G. Kim, Y. T. Lee, and N. W. Kim, "Interpretation of permeation characteristics and membrane transport models through polyamide reverse osmosis membrane", Membr. J., 14, 75 (2004).
  6. M. Kurihara, T. Uemura, Y. Himeshima, K. Ueno, and R. Bairinji, "Development of crosslinked aromatic polyamide composite reverse osmosis membrane", J. Chem. Soc. Jpn., 2, 97 (1994)
  7. S. Y. Lee, J. W. Cho, and M Elimelech, "Combined influence of natural organic matter (NOM) and colloidal particles on nanofiltration membrane fouling", J. Membr. Sci., 262, 27 (2005). https://doi.org/10.1016/j.memsci.2005.03.043
  8. D. H. Shin, N. W. Kim, and Y. T. Lee, "Modification to the polyamide TFC RO membranes for improvement of chlorine-resistance", J. Membr. Sci., 376, 302 (2011). https://doi.org/10.1016/j.memsci.2011.04.045
  9. H. S. Medeiros, R. S. Pessoa, J. C. Sagas, M. A. Fraga, L. V. Santos, H. S. Maciel, M. Massi, A. S. da Silva Sobrinho, and M. E. H. Maia da Costa, "Effect of nitrogen content in amorphous SiCxNyOz thin films deposited by low temperature reactive magnetron co-sputtering technique", Surface and Coatings Technology, 206, 1787 (2011). https://doi.org/10.1016/j.surfcoat.2011.09.062
  10. V. Freger, "Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization", Langmuir, 19, 4791 (2003). https://doi.org/10.1021/la020920q
  11. H. Wong, H. Iwal, K. Kakushima, B. I. Tang, and P. K. Chu, "XPS study of the bonding properties of lanthanum oxide/silicon interface with a trace amount of nitrogen incorporation", Journal of the Electrochemical Society, 157, G49 (2010). https://doi.org/10.1149/1.3268128
  12. R. W. Baker, "Membrane technology and application, 2nd edition, A John Wiley & Sons, California (2004).
  13. N. W. Kim, "Preparation and characteristics of fouling resistant nanofiltration membranes", Membr. J., 17, 44 (2007).
  14. S. Kwon and Y. T. Lee "Improvement of fouling resistance with reverse rsmosis membrane using multi-layer silane-Epoxy surface modification", Membr. J., 25, 332 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.4.332
  15. H. M. Park, W. Y. Yang, and Y. T. Lee, "Characterization of reverse osmosis membrane surface modified by silane-epoxy using UV", Membr. J., 28, 169 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.3.169
  16. M. Hirose, H. Ito, and Y. Kamiyama, "Effect of skin layer surface structures on the flux behaviour of RO membranes", J. Membr. Sci., 121, 209 (1996). https://doi.org/10.1016/S0376-7388(96)00181-0
  17. N. Kim, D. H. Shin, and Y. T. Lee, "Effect of silane coupling agents on the performance of RO membranes", J. Membr. Sci., 300, 224 (2007). https://doi.org/10.1016/j.memsci.2007.05.039
  18. K. Boussu, B. Van der Bruggen, A. Volodin, J. Snauwaert, C. Van Haesendonck, and C. Vandecasteele, "Roughness and hydrophobicity studies of nanofiltration membranes using different modes of AFM, Journal Colloid and Interface Science, 286, 632 (2005). https://doi.org/10.1016/j.jcis.2005.01.095
  19. M. Safarpour, V. Vatanpour, A. Khataee, and M. Esmaeili, "Development of a novel high flux and fouling-resistant thin film composite nanofiltration membrane by embedding reduced graphene oxide/$TiO_2$", Separation and Purificcation Technology, 154, 96 (2015). https://doi.org/10.1016/j.seppur.2015.09.039
  20. C. Hobbs, S. Hong, and J. Taylor, "Effect of surface roughness on fouling of RO and NF membranes during filtration of a high organic surficial groundwater", Journal of Water Supply: Research and Technology-Aqua, 55, 559 (2006). https://doi.org/10.2166/aqua.2006.038
  21. K. J. Jothi and K. Palanivelu, "Synergistic effect of silane modified nanocomposites for active corrosion protection", Ceram. Int., 39, 7619 (2013). https://doi.org/10.1016/j.ceramint.2013.03.017
  22. R. Zhang, S. Tu, W. Shi, X. Wang. J. Cheng, Z. Zhang, L. Li, X. Bao, and B. Zhang, "Surface modification of piperazine-based nanofiltration membranes with serinol for enhanced antifouling properties in polymer flooding produced water treatment", RSC Adv., 7, 48904 (2017). https://doi.org/10.1039/C7RA09496E
  23. R. J. Hunter, "Zeta potential in colloid science: Pprinciples and applications", Academic Press, London (1981).
  24. G. S. Cho, D. H. Lee, H. M. Lim, S. H. Lee, C. Y. Kim, and D. S. Kim, "Characterization of surface charge and zeta potential of colloidal silica prepared by various methods", Korean J. Chem. Eng., 31, 2088 (2014). https://doi.org/10.1007/s11814-014-0112-5
  25. T. Puspasari and K.-V. Peinemann, "Application of thin film cellulose composite membrane for dye wastewater reuse", Journal of Water Process Engineering, 13, 176 (2016). https://doi.org/10.1016/j.jwpe.2016.08.008
  26. J. Yang, C. Park, B. Lee, and S. Kim, "Textile wastewater treatment by MF-UF cobined membrane filtration", Clean Technology, 12, 151 (2006).
  27. G. S. Cho, D. H. Lee, H. M. Lim, D. S. Kim, and S. H. Lee, "Relationship between the adsorption of dye and the surface charge density of silica sol", Textile Coloration and Finishing, 26, 297 (2014). https://doi.org/10.5764/TCF.2014.26.4.297
  28. N. Liu, Q. Zhang, R. Qu, W. Zhang, H. Li, T. Wei, and L. Feng, "Nanocomposite deposited membrane for oil-in water emulsion separation with in situ removal of anionic dyes and surfactants", Langmuir, 33, 7380 (2017). https://doi.org/10.1021/acs.langmuir.7b01281