DOI QR코드

DOI QR Code

Toward the multiscale nature of stress corrosion cracking

  • Liu, Xiaolong (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Hwang, Woonggi (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Park, Jaewoong (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Van, Donghyun (Daewoo Institute of Construction Technology) ;
  • Chang, Yunlong (School of Materials Science and Engineering, Shenyang University of Technology) ;
  • Lee, Seung Hwan (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Kim, Sung-Yup (Computational Science Research Center, Korea Institute of Science and Technology) ;
  • Han, Sangsoo (Computational Science Research Center, Korea Institute of Science and Technology) ;
  • Lee, Boyoung (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • Received : 2017.07.24
  • Accepted : 2017.10.24
  • Published : 2018.02.25

Abstract

This article reviews the multiscale nature of stress corrosion cracking (SCC) observed by high-resolution characterizations in austenite stainless steels and Ni-base superalloys in light water reactors (including boiling water reactors, pressurized water reactors, and supercritical water reactors) with related opinions. A new statistical summary and comparison of observed degradation phenomena at different length scales is included. The intrinsic causes of this multiscale nature of SCC are discussed based on existing evidence and related opinions, ranging from materials theory to practical processing technologies. Questions of interest are then discussed to improve bottom-up understanding of the intrinsic causes. Last, a multiscale modeling and simulation methodology is proposed as a promising interdisciplinary solution to understand the intrinsic causes of the multiscale nature of SCC in light water reactors, based on a review of related supporting application evidence.

Keywords

References

  1. S. Lozano-Perez, J. Dohr, M. Meisnar, K. Kruska, SCC in PWRs: learning from a bottom-up approach, Metall. Mat. Trans. E 1 (2014) 194-210.
  2. T. Moss, G.S. Was, Accelerated stress corrosion crack initiation of alloys 600 and 690 in hydrogenated supercritical water, Metall. Mat. Trans. A 48 (2017) 1613-1628.
  3. X.Y. Zhong, S.C. Bali, T. Shoji, Accelerated test for evaluation of intergranular stress corrosion cracking initiation characteristics of non-sensitized 316 austenitic stainless steel in simulated pressure water reactor environment, Corros. Sci. 115 (2017) 106-117. https://doi.org/10.1016/j.corsci.2016.11.019
  4. M.B. Toloczko, M.J. Olszta, D.K. Schreiber, S.M. Bruemmer, Corrosion and Stress Corrosion Crack Initiation of Cold-worked Alloy 690 in PWR Primary Water, 2013 downloaded from, https://lwrs.inl.gov/Materials%20Aging% 20and%20Degradation/Cold-Worked_Alloy_690_M2LW-13OR0402035.pdf.
  5. M.J. Buehler, J. Dodson, A.C.T. van Duin, P. Meulbroek, W.A. Goddard, The computational materials design facility (CMDF): a powerful framework for multi-paradigm multi-scale simulations, in: Materials Research Society Symposium Proceedings, 2006 downloaded from, http://web.mit.edu/mbuehler/www/research/CMDF/MRS-proc-2006-CMDF.pdf.
  6. M.J. Buehler, T. Ackbarow, Fracture mechanics of protein materials, Mater. Today 10 (2007) 46-58.
  7. S. Keten, M.J. Buehler, Large deformation and fracture mechanics of betahelical protein nanotube: atomistic and continuum modeling, Comp. Method. Appl. M 197 (2008) 3203-3214. https://doi.org/10.1016/j.cma.2007.11.028
  8. C. Lorenz, N.L. Doltsinis, Molecule dynamics simulation: from "ab initio" to "coarse grained", in: J. Leszczynski, A. Kaczmarek-Kedziera, T. Puzyn, M.G. Papadopoulos, H. Reis, M.K. Shukla (Eds.), Handbook of Computational Chemistry, Springer International Publishing, 2017, pp. 337-396.
  9. S.J. Zinkle, G.S. Was, Materials challenges in nuclear energy, Acta Mater. 61 (2013) 735-758. https://doi.org/10.1016/j.actamat.2012.11.004
  10. T. Allen, J. Busby, M. Meyer, D. Petti, Materials challenges for nuclear systems, Mater. Today 13 (2010) 14-23.
  11. G.S. Was, P. Ampornrat, G. Gupta, S. Teysseyre, E.A. West, T.R. Allen, K. Sridharan, L. Tan, Y. Chen, X. Ren, C. Pister, Corrosion and stress corrosion cracking in supercritical water, J. Nucl. Mater. 371 (2007) 176-201. https://doi.org/10.1016/j.jnucmat.2007.05.017
  12. J.H. Liu, G. Bin, The Effect of Dissolved Oxygen on Stress Corrosion Cracking of 310S in SCW, 2016 downloaded from, https://www.iaea.org/ NuclearPower/Downloadable/Meetings/2016/2016-10-10-10-14-NPTDS/III- 5_J.Liu_The_effect_of_dissolved_oxygen.pdf.
  13. M. Nezakata, H. Akhiania, S. Penttilab, S.M. Sabetc, J. Szpunara, Effect of thermo-mechanical processing on oxidation of austenitic stainless steel 316L in supercritical water, Corros. Sci. 94 (2015) 197-206. https://doi.org/10.1016/j.corsci.2015.02.008
  14. T. Terachi, K. Fujii, K. Arioka, Microstructural characterization of SCC crack tip and oxide film for SUS 316 stainless steel in simulated PWR primary water at $320^{\circ}C$, J. Nucl. Sci. Technol. 42 (2005) 225-232. https://doi.org/10.1080/18811248.2005.9726383
  15. S.E. Ziemniak, M. Hanson, Corrosion behavior of 304 stainless steel in high temperature hydrogenated water, Corros. Sci. 44 (2002) 2209-2230. https://doi.org/10.1016/S0010-938X(02)00004-5
  16. S. Lozano-Perez, K. Kruska, I. Iyengarb, T. Terachic, T. Yamadac, The role of cold work and applied stress on surface oxidation of 304 stainless steel, Corros. Sci. 56 (2012) 78-85. https://doi.org/10.1016/j.corsci.2011.11.021
  17. G.S. Was, S. Teysseyre, Z. Jiao, Corrosion of austenitic alloys in supercritical water, Corrosion 63 (2006) 989-1005.
  18. S. Cisse, L. Laffont, B. Tanguy, M.C. Lafont, E. Andrieu, Effect of surface preparation on the corrosion of austenitic stainless steel 304L in high temperature steam and simulated PWR primary water, Corros. Sci. 56 (2012) 209-216. https://doi.org/10.1016/j.corsci.2011.12.007
  19. M. Fulger, M. Mihalache, D. Ohai, S. Fulger, S.C. Valeca, Analyses of oxide films grown on AlSi 304L stainless steel and Incoloy 800HT exposed to supercritical water environment, J. Nucl. Mater. 415 (2011) 147-157. https://doi.org/10.1016/j.jnucmat.2011.05.007
  20. M.C. Sun, X.Q. Wu, Z.E. Zhang, E.H. Han, Oxidation of 316 stainless steel in supercritical water, Corros. Sci. 51 (2009) 1069-1072. https://doi.org/10.1016/j.corsci.2009.03.008
  21. M. Da Cunha Belo, M. Walls, N.E. Hakiki, J. Coset, E. Picquenard, G. Sagon, D. Noel, Composition, structure and properties of the oxide films formed on the stainless steel 316L in a primary type PWR environment, Corros. Sci. 40 (1998) 447-463. https://doi.org/10.1016/S0010-938X(97)00158-3
  22. S.E. Ziemniak, M. Hanson, Corrosion behavior of NiCrFe alloy 600 in high temperature hydrogenated water, Corros. Sci. 48 (2006) 498-521. https://doi.org/10.1016/j.corsci.2005.01.006
  23. Y.L. Han, J.N. Mei, Q.J. Peng, E.H. Han, W. Ke, Effect of electropolishing on corrosion of Alloy 600 in high temperature water, Corros. Sci. 98 (2015) 72-80. https://doi.org/10.1016/j.corsci.2015.05.026
  24. T. Nakagawa, N. Totsuka, T. Terachi, N. Nakajima, Influence of dissolved hydrogen on oxide film and PWSCC of Alloy 600 in PWR primary water, J. Nucl. Sci. Technol. 40 (2003) 39-43. https://doi.org/10.1080/18811248.2003.9715330
  25. Y.S. Lim, H.P. Kim, S.S. Hwang, Microstructural characterization on intergranular stress corrosion cracking of Alloy 600 in PWR primary water environment, J. Nucl. Mater. 440 (2013) 46-54. https://doi.org/10.1016/j.jnucmat.2013.03.088
  26. D. Morton, N. Lewis, M. Hanson, S. Rice, P. Sanders, Nickel Alloy Primary Water Bulk Surface and SCC Corrosion Film Analytical Characterization and SCC Mechanistic Implications (LM-07K022), 2007 downloaded from, http:// www.osti.gov/scitech/servlets/purl/903204/.
  27. T. Moss, G.P. Cao, G.S. Was, Oxidation of alloy 600 and alloy 690: experimentally accelerated study in hydrogenated supercritical water, Metall. Mat. Trans. A 48 (2017) 1596-1612. https://doi.org/10.1007/s11661-016-3897-5
  28. S.E. Ziemniak, M. Hanson, Corrosion behavior of NiCrMo alloy 625 in high temperature, hydrogenated water, Corros. Sci. 45 (2003) 1595-1618. https://doi.org/10.1016/S0010-938X(02)00230-5
  29. M.C. Sun, X.Q. Wu, Z.E. Zhang, E.H. Han, Analysis of oxide film grown on Alloy 625 in oxidizing supercritical water, J. Supercrit. Fluid 47 (2008) 309-317. https://doi.org/10.1016/j.supflu.2008.07.010
  30. K.H. Chang, J.S. Huang, C.B. Yan, T.K. Yeh, F.R. Chen, J.J. Kai, Corrosion behavior of Alloy 625 in supercritical water environments, Prog. Nucl. Energy 57 (2012) 20-31. https://doi.org/10.1016/j.pnucene.2011.12.015
  31. W.J. Kuang, X.Q. Wu, E.H. Han, J.C. Rao, The mechanism of oxide film formation on alloy 690 in oxygenated high temperature water, Corros. Sci. 53 (2011) 3853-3860. https://doi.org/10.1016/j.corsci.2011.07.038
  32. M. Sennour, L. Marchetti, F. Martin, S. Perri, R. Molins, M. Pijolat, A detailed TEM and SEM study of Ni-base alloys oxide scales formed in primary conditions of pressurized water reactor, J. Nucl. Mater. 402 (2010) 147-156. https://doi.org/10.1016/j.jnucmat.2010.05.010
  33. X.Y. Zhong, E.H. Han, X.Q. Wu, Corrosion behavior of Alloy 690 in aerated supercritical water, Corros. Sci. 66 (2013) 369-379. https://doi.org/10.1016/j.corsci.2012.10.001
  34. F. Huang, J.Q. Wang, E.H. Han, W. Ke, Microstructural characteristics of the oxide films formed on Alloy 690 TT in pure and primary water at $325^{\circ}C$, Corros. Sci. 76 (2013) 52-59. https://doi.org/10.1016/j.corsci.2013.06.023
  35. C. Maffiotte, A.S. Maderuelo, D.G. Briceno, AES characterization of oxide films formed on nickel-base alloys at supercritical water reactor (SCWR) conditions, Surf. Interface Anal. (2015), https://doi.org/10.1002/sia.5906.
  36. S. Bruemmer, M. Olszta, D. Schreiber, M. Toloczko, SCC initiation measurements on alloy 600 and 690 materials in PWR primary water, in: Alloy 690/ 52/152 PWSCC Research Collaboration Meeting (Conference Presentation), Electric Power Research Institute, Tampa, Florida, USA, 2014.
  37. J. Panter, B. Viguier, J.M. Cloue, M. Foucault, P. Combrade, E. Andrieu, Influence of oxide films on primary water stress corrosion cracking initiation of alloy 600, J. Nucl. Mater. 348 (2006) 213-221. https://doi.org/10.1016/j.jnucmat.2005.10.002
  38. W.W. Wang, Z.L. Zhang, X.C. Ren, Y.J. Guan, Y.J. Su, Corrosion product filminduced stress facilitates stress corrosion cracking, Sci. Rep. (2015), https://doi.org/10.1038/srep10579.
  39. K. Kruska, S.L. Perez, D.W. Saxey, T. Terachi, T. Yamada, G.D.W. Smith, Nanoscale characterisation of grain boundary oxidation in cold-worked stainless steels, Corros. Sci. 63 (2012) 225-233. https://doi.org/10.1016/j.corsci.2012.06.030
  40. S. Lozano-Perez, A guide on FIB preparation of samples containing stress corrosion crack tips for TEM and atom-probe analysis, Micron 39 (2008) 320-328. https://doi.org/10.1016/j.micron.2007.12.003
  41. S. Lozano-Perez, T. Yamada, T. Terachi, M. Schr€oder, C.A. English, G.D.M. Smith, C.R.M. Grovenor, B.L. Eyre, Multi-scale characterization of stress corrosion cracking of cold-worked stainless steels and the influence of Cr content, Acta Mater. 57 (2009) 5361-5381. https://doi.org/10.1016/j.actamat.2009.07.040
  42. S. Lozano-Perez, P. Rodrigo, L.C. Gontard, Three-dimensional characterization of stress corrosion cracks, J. Nucl. Mater. 408 (2011) 289-295. https://doi.org/10.1016/j.jnucmat.2010.11.068
  43. Y.H. Lu, Q.J. Peng, T. Sato, T. Shoji, An ATEM study of oxidation behavior of SCC crack tips in 304L stainless steel in high temperature oxygenated water, J. Nucl. Mater. 347 (2005) 52-68. https://doi.org/10.1016/j.jnucmat.2005.07.006
  44. S.M. Bruemmer, L.E. Thomas, High-resolution characterizations of stresscorrosion cracks in austenitic stainless steel from crack growth tests in BWR-simulated environments, in: Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System-water Reactors, 2005, pp. 189-197 downloaded from, http://iweb.tms.org/NM/NM-0702-5.pdf.
  45. M. Meisnar, M. Moody, S.L. Perez, Atom probe tomography of stress corrosion crack tips in SUS316 stainless steels, Corros. Sci. 98 (2015) 661-671. https://doi.org/10.1016/j.corsci.2015.06.008
  46. M. Meisnar, A. Vilalta-Clemente, A. Gholinia, M. Moody, A.J. Wilkinson, N. Huin, S. Lozano-Perez, Using transmission Kikuchi diffraction to study intergranular stress corrosion cracking in type 316 stainless steels, Micron 75 (2015) 1-10. https://doi.org/10.1016/j.micron.2015.04.011
  47. S.M. Bruemmer, L.E. Thomas, High-resolution Analytical Electron Microscopy Characterization of Stress Corrosion Crack Tips, 2001 (ICF100890OR), downloaded from, http://www.gruppofrattura.it/ocs/index.php/ICF/ICF10/ paper/view/4752/6759.
  48. H.P. Kim, D.J. Kim, S.W. Kim, Y.S. Lim, S.S. Hwang, Ex situ and in situ characterization of stress corrosion cracking of nickel-base alloys at high temperature, J. Solid State Electr 18 (2014) 309-323. https://doi.org/10.1007/s10008-013-2248-3
  49. C. Guerre, Stress corrosion cracking of nickel base alloys in PWR primary water, A report in the MINOS Workshop, Materials Innovation for Nuclear Optimized Systems Workshop, December 5-7, 2012, CEA-INSTN Saclay, France, http://dx.doi.org/10.105.1/epjconf/20135104003.
  50. J. Lindsay, Stress Corrosion Cracking and Internal Oxidation of Alloy 600 in High Temperature Hydrogenated Steam and Water, Ph.D. thesis, University of Manchester, 2014.
  51. Y.S. Lim, S.W. Kim, S.S. Hwang, H.P. Kim, C.H. Jang, Intergranular oxidation of Ni-based Alloy 600 in a simulated PWR primary water environment, Corros. Sci. 108 (2016) 125-133. https://doi.org/10.1016/j.corsci.2016.02.040
  52. M. Sennour, P. Laghoutaris, C. Guerre, R. Molins, Advanced TEM characterization of stress corrosion cracking of Alloy 600 in pressurized water reactor primary water environment, J. Nucl. Mater. 393 (2009) 254-266. https://doi.org/10.1016/j.jnucmat.2009.06.014
  53. D.K. Schreiber, M.J. Olszta, D.W. Saxey, K. Kruska, K.L. Moore, S.L. Perez, S.M. Bruemmer, Examinations of oxidation and sulfidation of grain boundaries in alloy 600 exposed to simulated pressurized water reactor primary water, Microsc. Microanal 19 (2013) 676-687.
  54. S.Y. Persaud, A. Korinek, J. Huang, G.A. Botton, R.C. Newman, Internal oxidation of Alloy 600 exposed to hydrogenated steam and the beneficial effects of thermal treatment, Corros. Sci. 86 (2014) 108-122. https://doi.org/10.1016/j.corsci.2014.04.041
  55. G. Bertail, F. Scenini, M.G. Burke, The intergranular oxidation susceptibility of thermally-treated Alloy 600, Corros. Sci. 114 (2017) 112-122. https://doi.org/10.1016/j.corsci.2016.11.004
  56. K. Arioka, R.W. Staehle, T. Yamada, T. Miyamoyo, T. Terachi, Degradation of Alloy 690 after relatively short times, Corrosion 72 (2016) 1252-1268. https://doi.org/10.5006/2107
  57. H. Dugdale, D.E.J. Armstrong, E. Tarleton, S.G. Roberts, S. Lozano-Perez, How oxidized grain boundaries fail, Acta Mater. 61 (2013) 4707-4713. https://doi.org/10.1016/j.actamat.2013.05.012
  58. O. Verners, A.C.T. Van Duin, Comparative molecular dynamics study of fcc-Ni nanoplate stress corrosion in water, Surf. Sci. 633 (2015) 94-101. https://doi.org/10.1016/j.susc.2014.10.017
  59. M.L. Rossi, C.D. Taylor, A.C.T. van Duin, Reduced yield stress for zirconium exposed to iodine: reactive force field simulation, Adv. Model. Simulation Eng. Sci. 2 (2014) 19-27, https://doi.org/10.1186/s40323-014-0019-z.
  60. C.L. White, Grain Boundary Segregation and Intergranular Failure. International Al-Li Conference, 19 May 1980. Stone Mountain, Ga.
  61. M. Yamaguchi, M. Shiga, H. Kaburaki, Grain boundary decohesion by sulfur segregation in ferromagnetic iron and nickel-a first-principles study, Mater. Trans. 47 (2006) 2682-2689. https://doi.org/10.2320/matertrans.47.2682
  62. H.P. Chen, R.K. Kalia, E. Kaxiras, G. Lu, A. Nakano, K.I. Nomura, A.C.T. van Duin, P. Vashishta, Z. Yuan, Embrittlement of metal by solute segregationinduced amorphization, Phys. Rev. Lett. 104 (2010) 155502 (1-4). https://doi.org/10.1103/PhysRevLett.104.155502
  63. K. Kruska, Understanding the Mechanism of Stress Corrosion Cracking, Ph.D. thesis, University of Oxford, 2012.
  64. P.M. Scott, M. Le Calvar, The Proceedings of the Sixth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-water Reactors, 1993, pp. 657-665.
  65. A. Stratulat, D.E.J. Armstrong, S.G. Roberts, Micro-mechanical measurement of fracture behaviour of individual grain boundaries in Ni alloy 600 exposed to a pressurized water reactor environment, Corros. Sci. 104 (2016) 9-16. https://doi.org/10.1016/j.corsci.2015.10.019
  66. B. Langelier, S.Y. Persaud, A. Korinek, T. Casagrande, R.C. Newman, G.A. Botton, Effects of boundary migration and pinning particles on intergranular oxidation revealed by 2D and 3D analytical electron microscopy, Acta Mater. 131 (2017) 280-295. https://doi.org/10.1016/j.actamat.2017.04.003
  67. D.K. Schreiber, S.M. Bruemmer, M.J. Olszta, Grain boundary depletion and migration during selective oxidation of Cr in a Ni-5Cr binary alloy exposed to high-temperature hydrogenated water, Scripta Mater. 89 (2014) 41-44. https://doi.org/10.1016/j.scriptamat.2014.06.022
  68. R.W. Balluffi, Grain boundary diffusion mechanisms in metals, J. Electron. Mater. 21 (1992) 527-553. https://doi.org/10.1007/BF02650011
  69. D. Raabe, M. Herbig, S. Sandl€obes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, P.P. Choi, Grain boundary segregation engineering in metallic alloys: a pathway to the design of interfaces, Curr. Opin. Solid St. M. S. 18 (2014) 253-261. https://doi.org/10.1016/j.cossms.2014.06.002
  70. J.W. Cahn, Diffusion induced grain boundary migration, Scripta Metall. 13 (1979) 503-509. https://doi.org/10.1016/0036-9748(79)90078-4
  71. R.W. Balluffi, J.W. Cahn, Mechanism for diffusion induced grain boundary migration, Acta Metall. 29 (1981) 493-500. https://doi.org/10.1016/0001-6160(81)90073-0
  72. R.W. Balluffi, T. Kwok, P.D. Bristowe, A. Brokman, P.S. Ho, S. Yip, Determination of vacancy mechanism for grain boundary self-diffusion by computer simulation, Scripta Metall. 15 (1981) 951-956. https://doi.org/10.1016/0036-9748(81)90285-4
  73. M. Olszta, D. Schreiber, L. Thomas, S. Bruemmer, High-resolution crack imaging reveals degradation processes in nuclear reactor structural materials, Adv. Mater. Process. 170 (2012) 17-21.
  74. C.C.F. Amaral, F. Ormiga, J.A.C.P. Gomes, Electrochemical-induced dissolution of stainless steel files, Int. Endod. J. 48 (2015) 137-144. https://doi.org/10.1111/iej.12292
  75. J.M. Wang, H. Lu, L.F. Zhang, F.J. Meng, X.L. Xu, Effects of dissolved gas and cold work on the electrochemical behaviors of 304 stainless steel in simulated PWR primary water, Corrosion 73 (2017) 281-289. https://doi.org/10.5006/2221
  76. Y.J. Kim, P.L. Andresen, Data quality, issues and guidelines for electrochemical corrosion potentials measurement in high-temperature water, Corrosion 59 (2003) 584-596. https://doi.org/10.5006/1.3277589
  77. Y. Behnamian, A. Mostafaei, A. Kohandehghan, B. Zahiri, W.Y. Zheng, D. Guzonas, M. Chmielus, W.X. Chen, J.L. Luo, Corrosion behavior of alloy 316L stainless steel after exposure to supercritical water at 500C for 20,000 h, J. Supercrit. Fluids 127 (2017) 191-199. https://doi.org/10.1016/j.supflu.2017.03.022
  78. D. Sengupta, S. Kwak, A. Vasenkov, Y.K. Shin, A.C.T. van Duin, reportComputational Capabilities for Predictions of Interactions at the Grain Boundary of Refractory Alloys. Project Report, downloaded from: https://www.osti.gov/scitech/biblio/1170170.
  79. J. Robertson, The mechanism of high temperature aqueous corrosion of stainless steels, Corros. Sci. 32 (1991) 443-465. https://doi.org/10.1016/0010-938X(91)90125-9
  80. B. Stellwag, The mechanism of oxide film formation on austenitic stainless steels in high temperature water, Corros. Sci. 40 (1998) 337-370. https://doi.org/10.1016/S0010-938X(97)00140-6
  81. C.Y. Zou, Y.K. Shin, A.C.T. van Duin, H.Z. Fang, Z.K. Liu, Molecular dynamics simulations of the effects of vacancies on nickel self-diffusion, oxygen diffusion and oxidation initiation in nickel, using the ReaxFF reactive force field, Acta Materialia 83 (2015) 102-112. https://doi.org/10.1016/j.actamat.2014.09.047
  82. Lide DR. Handbook of chemistry and physics.
  83. D.A. Newsome, D. Sengupta, A.C.T. van Duin, High-temperature oxidation of SiC-based composite: rate constant calculation from ReaxFF MD simulation, part II, J. Phys. Chem. C 117 (2013) 5014-5027. https://doi.org/10.1021/jp307680t
  84. L. Marchetti, S. Perrin, F. Jambon, M. Pijolat, Corrosion of nickel-base alloys in primary medium of pressurized water reactors: new insights on the oxide growth mechanisms and kinetic modeling, Corros. Sci. 102 (2016) 24-35. https://doi.org/10.1016/j.corsci.2015.09.001
  85. M. Dumerval, S. Perrin, L. Marchetti, M. Sennour, F. Jomard, S. Vaubaillon, Y. Wouters, Effect of implantation defects on the corrosion of 316L stainless steels in primary medium of pressurized water reactors, Corros. Sci. 107 (2016) 1-8. https://doi.org/10.1016/j.corsci.2016.02.007
  86. V. Alexandrov, M.L. Sushko, D.K. Schreiber, S.M. Bruemmer, K.M. Rosso, Ab initio modeling of bulk and intragranular diffusion in Ni alloys, J. Phys. Chem. Lett. 6 (2015) 1618-1623. https://doi.org/10.1021/acs.jpclett.5b00177
  87. A. Paul, T. Laurila, V. Vuorinen, S.V. Divinski, Thermodynamics, Diffusion and the Kirkendall Effect in Solids, Springer Cham Heidelberg, New York Dordrecht London, 2014.
  88. Y. Yang, K.G. Field, T.R. Allen, J.T. Busby, Roles of vacancy/interstitial diffusion and segregation in the microchemistry at grain boundaries of irradiated Fe- Cr-Ni alloys, J. Nucl. Mater. 473 (2016) 35-53. https://doi.org/10.1016/j.jnucmat.2016.02.007
  89. D. Farkas, Atomistic theory and computer simulation of grain boundary structure and diffusion, J. Phys. Condens. Matter 12 (2000) R497-R516. https://doi.org/10.1088/0953-8984/12/42/201
  90. G.R. Love, Dislocation pipe diffusion, Acta Metall. 12 (1964) 731-737. https://doi.org/10.1016/0001-6160(64)90220-2
  91. M. Legros, G. Dehm, E. Arzt, J.B. John, Observation of giant diffusivity along dislocation cores, Science 21 (2008) 1646-1649.
  92. C.O.T. Galvin, M.W.D. Cooper, P.C.M. Fossati, C.R. Stanek, R.W. Grimes, D.A. Andersson, Pipe and grain boundary diffusion of He in UO2, J. Phys. Condens. Matter 28 (2016) 405002 (1-11). https://doi.org/10.1088/0953-8984/28/40/405002
  93. Y. Mishin, Chr Herzig, J. Bernardini, W. Gust, Grain boundary diffusion: fundamentals to recent developments, Int. Mater. Rev. 42 (1997) 155-178. https://doi.org/10.1179/imr.1997.42.4.155
  94. S. Sarrade, D. Feron, F. Rouillard, S. Perrin, S. Robin, J.C. Ruiz, H.A. Turc, Overview on corrosion in supercritical fluids, J. Supercrit. Fluids 120 (2017) 335-344. https://doi.org/10.1016/j.supflu.2016.07.022
  95. R.W. Balluffi, On measurements of self-diffusion rates along dislocations in F.C.C. metals, Phys. Stat. Sol 42 (1970) 11-34. https://doi.org/10.1002/pssb.19700420102
  96. N.L. Peterson, Grain-boundary diffusion in metals, Int. Meter. Rev. 28 (1983) 65-91.
  97. Y. Mishin, C. Herzig, J. Bernardini, W. Gust, Grain boundary diffusion: fundamentals to recent developments, Int. Mater. Rev. 42 (1997) 155-178. https://doi.org/10.1179/imr.1997.42.4.155
  98. A.H. King, Diffusion induced grain boundary migration, Int. Mater. Rev. 32 (1987) 173-189. https://doi.org/10.1179/095066087790150304
  99. A. Azizi, X.L. Zou, P. Ercius, Z.H. Zhang, A.L. Eliias, N. Perea-Lopez, G. Stone, M. Terrones, B.I. Yakobson, N. Alem, Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide, Nat. Commun. 4867 (2014) 1-7.
  100. K.G.F. Janssens, D. Olmsted, E.A. Holm, S.M. Foiles, S.L. Plimpton, P.M. Derlet, Computing the mobility of grain boundaries, Nat. Mater. 5 (2006) 124-127. https://doi.org/10.1038/nmat1559
  101. M.J. Buehler, A. Hartmaier, M.A. Duchaineau, F.F. Abraham, H.J. Gao, The dynamical complexity of work-hardening: a large-scale molecular dynamics simulation, Acta Mech. Sinica 21 (2005) 103-111. https://doi.org/10.1007/s10409-005-0019-9
  102. C. Thaulow, D. Sen, M.J. Buehler, Atomistic study of the effect of crack tip ledges on the nucleation of disloations in silicon single crystals at elevated temperature, Mat. Sci. Eng. A 528 (2011) 4357-4364. https://doi.org/10.1016/j.msea.2011.01.087
  103. R.O. Ritchie, Failure of silicon: crack formation and propagation, in: 13th Workshop on Crystalline Solar Cell Materials and Processes, August 2003. Vail, Colorado, USA. Downloaded from, http://robotics.eecs.berkeley.edu/-pister/147/SiliconFailureRitchie2003.pdf.
  104. G. Bertali, F. Scenini, M.G. Burke, The effect of residual stress on the preferential intergranular oxidation of Alloy 600, Corros. Sci. 111 (2016) 494-507. https://doi.org/10.1016/j.corsci.2016.05.022
  105. P.J. Withers, Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy, Phil. Trans. R. Soc. A 373 (2015) 20130157, https://doi.org/ 10.1098/rsta.2013.0157.
  106. M.J. Buehler, Z.P. Xu, Mind the helical crack, Nature 464 (2010) 42-43. https://doi.org/10.1038/464042a
  107. E. Bitzek, J.R. Kermode, P. Gumbsch, Atomistic aspects of fracture, Int. J. Fract 191 (2015) 13-30. https://doi.org/10.1007/s10704-015-9988-2
  108. A. Gleizer, G. Peralta, J.R. Kermode, A. De Vita, D. Sherman, Dissociative Chemisorption of O2 inducing stress corrosion cracking in silicon crystals, Phys. Rev. Lett. 112 (2014) 115501 (1-5). https://doi.org/10.1103/PhysRevLett.112.115501
  109. K. Nomura, Y.C. Chen, W.Q. Wang, R.K. Kalia, A. Nakano, P. Vashishta, L.H. Yang, Interaction and coalescence of nanovoids and dynamic fracture in silica glass: multimillion-to-billion atom molecular dynamics simulations, J. Phys. D. Appl. Phys. 42 (2009) 214011 (1-12). https://doi.org/10.1088/0022-3727/42/21/214011
  110. A. King, G. Johnson, D. Engelberg, W. Ludwig, J. Marrow, Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal, Science 321 (2008) 382-385. https://doi.org/10.1126/science.1156211
  111. M.J. Buehler, H.J. Gao, Dynamical fracture instabilities due to local hyperelasticity at crack tips, Nature 439 (2006) 307-310. https://doi.org/10.1038/nature04408
  112. V. Priya, K.K. Rajiv, N. Aiichiro, K. Efthimios, G. Ananth, L. Gang, E. Stephan, V.F. Arthur, H.Q. Rnady, M.A. John, Y.H. Lin, Hierarchical Petascale Simulation Framework for Stress Corrosion Cracking. Project Report of Scientific Discovery Through Advanced Computing (Grant Number: DE-FC02-06ER25788), 2014 downloaded from, https://www.osti.gov/scitech/servlets/purl/1164641.
  113. O. Verners, Molecular Dynamics Analysis of Oxidation, Segregation and Stress Corrosion Failure of Refractory Alloys, Ph.D. thesis, The Pennsylvania State University, 2014.
  114. T.T. Nguyen, J. Bolivar, J. Rethore, M.C. Baietto, M. Fregonese, A phase field method for modeling stress corrosion crack propagation in a nickel base alloy, Int. J. Solids Struct. 112 (2017) 65-82. https://doi.org/10.1016/j.ijsolstr.2017.02.019
  115. M.J. Buehler, F.F. Abraham, H.J. Gao, Hyperelasticity governs dynamic fracture at a critical length scale, Nature 426 (2003) 141-146. https://doi.org/10.1038/nature02096
  116. W.G. Hwang, S.G. Bae, J.S. Kim, B.Y. Lee, Acoustic emission characteristics of stress corrosion cracks in a type 304 stainless steel tube, Nucl. Eng. Technol. 47 (2015) 454-460. https://doi.org/10.1016/j.net.2015.04.001
  117. J.S. Kim, B.Y. Lee, W.G. Hwang, S.S. Kang, The effect of welding residual stress for making artificial stress corrosion crack in the STS 304 pipe, Adv. Mater. Sci. Eng. 2015 (2015) 7, https://doi.org/10.1155/2015/932512. Article ID 932512.
  118. P. Andresen, SCC of Alloys 152/52/52i Weld Metal in PWR Water (Conference Presentation), Alloy 690/52/152 PWSCC Research Collaboration Meeting, Electric Power Research Institute, Tampa, Florida, USA, December 2-4, 2014.
  119. M. Morra, M. Othon, S. McCracken, B. Sutton, A. Ahluwalia, Analysis Narrow Groove 52M Welds SA508 and SA508 to Alloy 690 (Conference Presentation), Alloy 690/52/152 PWSCC Research Collaboration Meeting, Electric Power Research Institute, Tampa, Florida, USA, December 2-4, 2014.
  120. S. Bruemmer, M.J. Olszta, N.R. Overman, M.B. Toloczko, Cold-work effects on stress corrosion crack growth in Alloy 690 tubing and plate materials, in: 17th International Conference on Environmental Degradation of Materials in Nuclear Power System-water Reactors, Ottawa, Ontario, Canada, August 9- 12, 2015.
  121. S. Bruemmer, M.J. Olszta, N. Overman, M. Toloczko, Cold and warm work effects on stress corrosion crack growth in Alloy 690 materials (conference presentation), in: ICG-EAC Meeting, Ann Arbor, Michigan, USA, May 18-22, 2015 downloaded from, https://www.nrc.gov/docs/ML1514/ML15140A420.pdf.
  122. W.Q. Zhang, K.W. Fang, Y.J. Hu, S.Y. Wang, X.L. Wang, Effect of machinginduced surface residual stress on initiation of stress corrosion cracking in 316 austenitic stainless steel, Corros. Sci. 108 (2016) 173-184. https://doi.org/10.1016/j.corsci.2016.03.008
  123. S.M. Bruemmer, M.J. Olszta, N.R. Overman, M.B. Toloczko, Microstructural effects on stress corrosion crack growth in cold-worked alloy 690 tubing and plate materials, in: 16th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-water Reactors, Asheville, North Carolina, USA, 2013 downloaded from, https://www.nrc.gov/docs/ML1322/ML13220A048.pdf.
  124. S.M. Bruemmer, M.J. Olszta, M.B. Toloczko, L.E. Thomas, Linking microstructure to stress corrosion cracking of cold rolled alloy 690 in PWR primary water, Corrosion 69 (2013) 953-963. https://doi.org/10.5006/0808
  125. J. Hou, Q.J. Peng, Z.P. Lu, T. Shoji, J.Q. Wang, E.H. Han, W. Ke, Effects of cold working degrees on grain boundary characters and strain concentration at grain boundaries in Alloy 600, Corros. Sci. 53 (2011) 1137-1142. https://doi.org/10.1016/j.corsci.2010.11.022
  126. D. Groen, S.J. Zasada, P.V. Coveney, Survey of multiscale and multiphysics applications and communities, Comput. Sci. Eng. 16 (2013) 34-43.
  127. S.J. Plimpton, A.P. Thompson, Computational aspects of many-body potentials, MRS Bull. 37 (2012) 513-521. https://doi.org/10.1557/mrs.2012.96
  128. M.L. Sushko, V. Alexandrov, D.K. Schreiber, K.M. Rosso, S.M. Bruemmer, Multiscale model of metal alloy oxidation at grain boundaries, J. Chem. Phys. 142 (2015), 214114-1-214114-8. https://doi.org/10.1063/1.4921940
  129. R.A. Friesner, Ab initio quantum chemistry: methodology and applications, P. Natl. Acad. Sci. USA 102 (2005) 6648-6653. https://doi.org/10.1073/pnas.0408036102
  130. J.T. Hynes, Molecules in motion: chemical reaction and allied dynamics in solution and elsewhere, Annu. Rev. Phys. Chem. 66 (2015) 1-20. https://doi.org/10.1146/annurev-physchem-040214-121833
  131. K. Kang, Y.S. Meng, J. Breger, C.P. Grey, G. Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries, Science 311 (2006) 977-980. https://doi.org/10.1126/science.1122152
  132. L. Kunz, F.M. Kuhn, O. Deutschmann, Kinetic Monte Carlo simulations of surface reactions on supported nanoparticles: a novel approach and computer code, J. Chem. Phys. 143 (2015), 044108-1-10. https://doi.org/10.1063/1.4926924
  133. I.B. Obot, D.D. Macdonald, Z.M. Gasem, Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors Part 1: an overview, Corros. Sci. 99 (2015) 1-30. https://doi.org/10.1016/j.corsci.2015.01.037
  134. M. Pavone, A.B. Mu-noz-García, A.M. Ritzmann, E.A. Carter, First-principles study of lanthanum strontium manganite: insights into electronic structure and oxygen vacancy formation, J. Phys. Chem. C 118 (2014) 13346-13356. https://doi.org/10.1021/jp500352h
  135. T. Tan, X.L. Yang, C.M. Krauter, Y.G. Ju, E.A. Carter, Ab initio kinetics of hydrogen abstraction from methyl acetate by hydrogen, methyl, oxygen, hydroxyl, and hydroperoxy radicals, J. Phys. Chem. A 119 (2015) 6277-6390.
  136. R.E. Thomas, G.H. Booth, A. Alavi, Accurate ab initio calculation of ionization potentials of the first-row transition metals with the configurationinteraction quantum Monte Carlo technique, Phys. Rev. Lett. 114 (2015) 033001, https://doi.org/10.1103/PhysRevLett.114.033001.
  137. A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, ReaxFF: a reactive force field for hydrocarbons, J. Phys. Chem. A 105 (2001) 9396-9409. https://doi.org/10.1021/jp004368u
  138. T.P. Senftle, S.H. Md Mahbubul Islam, S.B. Kylasa, Y.X. Zheng, Y.K. Shin, C. Junkermeier, R. Engel-Herbert, M.J. Janik, H.M. Aktulga, T. Verstraelen, A. Grama, A.C.T. van Duin, The ReaxFF reactive force-field: development, applications and future directions, npj Computational Mater. 2 (2016), 15011, https://doi.org/10.1038/npjcompumats.2015.11.
  139. T.R. Shan, B.D. Devine, T.W. Kemper, S.B. Sinnott, S.R. Phillpot, Chargedoptimized many-body potential for the hafnium/hafnium oxide system, Phys. Rev. B 81 (2010) 125328. https://doi.org/10.1103/PhysRevB.81.125328
  140. X.W. Zhou, F.P. Doty, Embedded-ion method: an analytical energyconserving charge-transfer interatomic potential and its application to the La-Br system, Phys. Rev. B 78 (2008) 224307. https://doi.org/10.1103/PhysRevB.78.224307
  141. D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys. Condens. Matter 14 (2002) 783-802. https://doi.org/10.1088/0953-8984/14/4/312
  142. S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys. 112 (2000) 6472-6486. https://doi.org/10.1063/1.481208
  143. F.H. Streitz, J.W. Mintmire, Electrostatic potentials for metal-oxide surfaces and interfaces, Phys. Rev. B 50 (1994) 11996-12003. https://doi.org/10.1103/PhysRevB.50.11996
  144. J. Tersoff, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B 37 (1988) 6991-7000. https://doi.org/10.1103/PhysRevB.37.6991
  145. M.J. Buehler, A.C.T. van Duin, W.A. Goddard, Multiparadigm modeling of dynamical crack propagation in silicon using a reactive force field, Phys. Rev. Lett. 96 (2006), 095505-1-095505-4. https://doi.org/10.1103/PhysRevLett.96.095505
  146. M.M. Islam, C.Y. Zou, A.C.T. van Duin, S. Raman, Interactions of hydrogen with the iron and iron carbide interfaces: a ReaxFF molecular dynamics study, Phys. Chem. Chem. Phys. 2 (2016) 761-771.
  147. M.L. Rossi, C.D. Taylor, First-principles insights into the nature of zirconiumiodine interactions and the initiation of iodine-induced stress corrosion cracking, J. Nucl. Mater. 458 (2015) 1-10. https://doi.org/10.1016/j.jnucmat.2014.11.114
  148. G.J. Tainter, G.C. Schatz, Reactive force field modeling of zinc oxide nanoparticle formation, J. Phys. Chem. C 120 (2016) 2950-2961.
  149. W. Barrows, R. Dingreville, D. Spearot, Tractioneseparation relationships for hydrogen induced grain boundary embrittlement in nickel via molecular dynamics simulations, Mat. Sci. Eng. A 650 (2016) 354-364. https://doi.org/10.1016/j.msea.2015.10.042
  150. X.Y. Li, H.J. Gao, Atomistic modeling of deformation and failure mechanisms in nanostructured materials, Natl. Sci. Rev. 2 (2015) 133-136. https://doi.org/10.1093/nsr/nwu049
  151. D.R. Alfonso, D.N. Tafen, Simulation of atomic diffusion in the Fcc NiAl system: a kinetic Monte Carlo study, J. Phys. Chem. C 119 (2015) 11809-11817. https://doi.org/10.1021/acs.jpcc.5b00733
  152. M. Ma, G. Tocci, A. Michaelides, G. Aeppli, Fast diffusion of water nanodroplets on graphene, Nat. Mater. 15 (2016) 66-71. https://doi.org/10.1038/nmat4449
  153. M.I. Mendelev, C. Deng, C.A. Schuh, D.J. Srolovitz, Comparison of molecular dynamics simulation methods for the study of grain boundary migration, Model. Simul. Mater. Sci. Eng 21 (2013), https://doi.org/10.1088/0965-0393/ 21/4/045017.
  154. I.I. Novoselov, A.V. Yanilkin, Impact of segregated interstitials on structures and energies of tilt grain boundaries in Mo, Comp. Mater. Sci. 112 (2016) 276-281. https://doi.org/10.1016/j.commatsci.2015.11.004
  155. O. Senninger, F. Soisson, E. Martínez, M. Nastar, C.C. Fu, Y. Brechet, Modeling radiation induced segregation in ironechromium alloys, Acta Materialia 103 (2016) 1-11. https://doi.org/10.1016/j.actamat.2015.09.058
  156. Y. Sun, S. Hara, Atomistic study of segregation and diffusion of yttrium and calcium cations near electrolyte surfaces in solid oxide fuel cells, J. Eur. Ceram. Soc. 35 (2015) 3063-3074. https://doi.org/10.1016/j.jeurceramsoc.2015.04.015
  157. F. Ulomek, V. Mohles, Separating grain boundary migration mechanisms in molecular dynamics simulation, Acta Mater. 103 (2016) 424-432. https://doi.org/10.1016/j.actamat.2015.10.021
  158. M. Upmanyu, D.J. Srolovitz, A.E. Lobkovsky, J.A. Warren, W.C. Carter, Simultaneous grain boundary migration and grain rotation, Acta Mater. 54 (2006) 1707-1719. https://doi.org/10.1016/j.actamat.2005.11.036
  159. J. Hemminger, G. Crabtree, J. Sarrao, From quanta to the continuum: opportunity for mesoscale science. A Report for the Basic Energy Sciences Advisory Committee Mesoscale Science Subcommittee, 2012. http://science.energy.gov/-/media/bes/pdf/reports/files/OFMS_rpt.pdf.
  160. J.S. Chen, H.S. Lu, D. Moldovan, D. Wolf, Mesoscale modeling of grain boundary migration under stress using coupled finite element and meshfree methods, 15th ASCE Engineering Mechanics Conference, Columbia University, New York, NY (US), 06/02/2002e06/05/2002. downloaded from: https://searchworks.stanford.edu/view/11318775.
  161. C.P. Race, R. Hadian, J. von Pezold, B. Grabowski, J. Neugebauer, Mechanisms and kinetics of the migration of grain boundaries containing extended defects, Phys. Rev. B 92 (2015) 174115, https://doi.org/10.1103/PhysRevB.92.174115.
  162. C.P. Race, J. von Pezold, J. Neugebauer, Role of the mesoscale in migration kinetics of flat grain boundaries, Phys. Rev. B 89 (2014) 214110. https://doi.org/10.1103/PhysRevB.89.214110
  163. Q. Du, R. Lipton, Peridynamics, fracture, and nonlocal continuum models, SIAM News 47 (2014) downloaded from, https://www.siam.org/pdf/news/ 2148.pdf.
  164. A.D. Rollett, G.S. Rohrer, R.M. Suter, Understanding materials microstructure and behavior at the mesoscale, MRS Bull. 40 (2015) 951-958. https://doi.org/10.1557/mrs.2015.262
  165. A.P. Jivkov, N.P.C. Stevens, T.J. Marrow, A two-dimensional mesoscale model for intergranular stress corrosion crack propagation, Acta Mater. 54 (2006) 3493-3501. https://doi.org/10.1016/j.actamat.2006.03.030
  166. T.L. Xu, R. Stewart, J.H. Fan, X.G. Zeng, A.L. Yao, Bridging crack propagation at the atomistic and mesoscopic scale for BCC-Fe with hybrid multiscale methods, Eng. Fract. Mech. 155 (2016) 166-182. https://doi.org/10.1016/j.engfracmech.2015.12.015
  167. S. Yip, M.P. Short, Multiscale materials modelling at the mesoscale, Nat. Mater. Commentary 12 (2013) 774-777. https://doi.org/10.1038/nmat3746
  168. S.A. Silling, Peridynamic Model for Fatigue Cracking, 2014 downloaded from: http://prod.sandia.gov/techlib/access-control.cgi/2014/1418590.pdf.
  169. K. Fu, L. Chang, L. Ye, Y.B. Yin, Indentation stress-based models to predict fracture properties of brittle thin film on a ductile substrate, Surf. Coat. Tech. 296 (2016) 46-57. https://doi.org/10.1016/j.surfcoat.2016.03.067
  170. H. Haftbaradaran, X.C. Xiao, H.J. Gao, Critical film thickness for fracture in thin-film electrodes on substrates in the presence of interfacial sliding, Modelling Simul, Mater. Sci. Eng. 21 (2013) 074008. https://doi.org/10.1088/0965-0393/21/7/074008

Cited by

  1. Crack growth and cracking behavior of Alloy 600/182 and Alloy 690/152 welds in simulated PWR primary water vol.51, pp.1, 2018, https://doi.org/10.1016/j.net.2018.09.011
  2. Effect of magnetic field frequency on the shape of GMAW welding arc and weld microstructure properties vol.6, pp.8, 2018, https://doi.org/10.1088/2053-1591/ab2572
  3. Modeling of stress corrosion cracking growth rates for key structural materials of nuclear power plant vol.55, pp.2, 2018, https://doi.org/10.1007/s10853-019-03968-w
  4. Atomistic investigation on initiation of stress corrosion cracking of polycrystalline Ni60Cr30Fe10 alloys under high-temperature water by reactive molecular dynamics s vol.187, pp.None, 2018, https://doi.org/10.1016/j.commatsci.2020.110087
  5. Effect of Mechanical Heterogeneity on Strain and Stress Fields at Crack Tips of SCC in Dissimilar Metal Welded Joints vol.14, pp.16, 2018, https://doi.org/10.3390/ma14164450
  6. TEM investigation of SCC crack tips in high Si stainless steel tapered specimens vol.56, pp.8, 2018, https://doi.org/10.1080/1478422x.2021.1961665