DOI QR코드

DOI QR Code

Removal of cobalt ions from aqueous solution using chitosan grafted with maleic acid by gamma radiation

  • Zhuang, Shuting (Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University) ;
  • Yin, Yanan (Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University) ;
  • Wang, Jianlong (Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University)
  • Received : 2017.02.05
  • Accepted : 2017.11.17
  • Published : 2018.02.25

Abstract

Chitosan was modified by gamma radiation-induced grafting with maleic acid and then used for the removal of cobalt ions from aqueous solutions. Chitosan-g-maleic acid was characterized by Fourier Transform infrared spectroscopy (FT-IR). The effect of the dose (1-5 kGy) and monomer concentration (0.3-1.3%, m/v) on the grafting ratio was examined. The adsorption kinetics and isotherms were also investigated. The results showed that the optimal dose for grafting was 2 kGy. When monomer concentration was within the range of 0.3-1.3% (m/v), the grafting ratio increased almost linearly. For the adsorption of cobalt ions by chitosan-g-maleic acid beads, the pseudo second-order kinetic model ($R^2=0.99$) and Temkin isotherm model ($R^2=0.96$) were able to fit the experimental data reasonably well. The equilibrium adsorption capacity of cobalt ions increased from 2.00 mg/g to 2.78 mg/g after chitosan modification.

Keywords

References

  1. C.L. Chen, D. Xu, X.L. Tan, X.K. Wang, Sorption behavior of Co(II) on gamma-$Al_2O_3$ in the presence of humic acid, J. Radioanal. Nucl. Chem. 273 (2007) 227-233. https://doi.org/10.1007/s10967-007-0741-9
  2. C. Cojocaru, G. Zakrzewska-Trznadel, A. Miskiewicz, Removal of cobalt ions from aqueous solutions by polymer assisted ultrafiltration using experimental design approach Part 2: optimization of hydrodynamic conditions for a crossflow ultrafiltration module with rotating part, J. Hazard. Mater. 169 (2009) 610-620. https://doi.org/10.1016/j.jhazmat.2009.03.148
  3. T. Missana, M. Garcia-Gutierrez, Adsorption of bivalent ions (Ca(II), Sr(II) and Co(II)) onto FEBEX bentonite, Phys. Chem. Earth 32 (2007) 559-567. https://doi.org/10.1016/j.pce.2006.02.052
  4. M. Xing, J.L. Wang, Nanoscaled zero valent iron/graphene composite as an efficient adsorbent for Co(II) removal from aqueous solution, J. Colloid Interface Sci. 474 (2016) 119-128. https://doi.org/10.1016/j.jcis.2016.04.031
  5. G. Zakrzewska-Trznadel, Advances in membrane technologies for the treatment of liquid radioactive waste, Desalination 321 (2013) 119-130. https://doi.org/10.1016/j.desal.2013.02.022
  6. J.L. Wang, C. Chen, Biosorbents for heavy metals removal and their future, Biotechnol. Adv. 27 (2009) 195-226. https://doi.org/10.1016/j.biotechadv.2008.11.002
  7. M. Xing, L.J. Xu, J.L. Wang, Mechanism of Co(II) adsorption by zero valent iron/ graphene nanocomposite, J. Hazard. Mater. 301 (2016) 286-296. https://doi.org/10.1016/j.jhazmat.2015.09.004
  8. B. An, H. Lee, S. Lee, S.H. Lee, J.W. Choi, Determining the selectivity of divalent metal cations for the carboxyl group of alginate hydrogel beads during competitive sorption, J. Hazard. Mater. 298 (2015) 11-18. https://doi.org/10.1016/j.jhazmat.2015.05.005
  9. A.D. Augst, H.J. Kong, D.J. Mooney, Alginate hydrogels as biomaterials, Macromol. Biosci. 6 (2006) 623-633. https://doi.org/10.1002/mabi.200600069
  10. J.L. Wang, C. Chen, Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides, Bioresour. Technol. 160 (2014) 129-141. https://doi.org/10.1016/j.biortech.2013.12.110
  11. Y.H. Zhu, J. Hu, J.L. Wang, Removal of $Co^{2+}$ from radioactive wastewater by polyvinyl alcohol (PVA)/chitosan magnetic composite, Prog. Nucl. Energy 71 (2014) 172-178. https://doi.org/10.1016/j.pnucene.2013.12.005
  12. Y.H. Gad, Preparation and characterization of poly (2-acrylamido-2- methylpropane-sulfonic acid)/chitosan hydrogel using gamma irradiation and its application in wastewater treatment, Radiat. Phys. Chem. 77 (2008) 1101-1107. https://doi.org/10.1016/j.radphyschem.2008.05.002
  13. T.B. Mostafa, H.F. Naguib, M.W. Sabaa, S.M. Mokhtar, Graft copolymerization of itaconic acid onto chitin and its properties, Polym. Int. 54 (2005) 221-225. https://doi.org/10.1002/pi.1690
  14. H.H. Sokker, N.M. El-Sawy, M.A. Hassan, B.E. El-Anadouli, Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization, J. Hazard. Mater. 190 (2011) 359-365. https://doi.org/10.1016/j.jhazmat.2011.03.055
  15. Y.W. Chen, J.L. Wang, Removal of radionuclide $Sr^{2+}$ ions from aqueous solution using synthesized magnetic chitosan beads, Nucl. Eng. Des. 242 (2012) 445-451. https://doi.org/10.1016/j.nucengdes.2011.10.059
  16. V.A. Izvozchikova, N.V. Pastukhova, S.A. Ryabov, Y.D. Semchikov, L.A. Smirnova, A.E. Mochalova, Flocculation power of chitosan and its derivatives in mixtures with anionic flocculants, Russ. J. Appl. Chem. 76 (2003) 1784-1786. https://doi.org/10.1023/B:RJAC.0000018683.54755.f3
  17. T. Kume, N. Nagasawa, F. Yoshii, Utilization of carbohydrates by radiation processing, Radiat. Phys. Chem. 63 (2002) 625-627. https://doi.org/10.1016/S0969-806X(01)00558-8
  18. Y.H. Zhu, J.L. Wang, Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan, J. Hazard. Mater. 221 (2012) 155-161.
  19. Y.W. Chen, J.L. Wang, Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu(II) removal, J. Chem. Eng. 168 (2011) 286-292. https://doi.org/10.1016/j.cej.2011.01.006
  20. Y.W. Chen, J.L. Wang, The characteristics and mechanism of Co(II) removal from aqueous solution by a novel xanthate-modified magnetic chitosan, Nucl. Eng. Des. 242 (2012) 452-457. https://doi.org/10.1016/j.nucengdes.2011.11.004
  21. F. Jia, J.F. Li, J.L. Wang, Y.L. Sun, Removal of cesium from simulated radioactive wastewater using a novel disc tubular reverse osmosis system, Nucl. Technol. 197 (2017) 219-224. https://doi.org/10.13182/NT16-6
  22. F. Jia, J.L. Wang, Separation of cesium ions from aqueous solution by vacuum membrane distillation process, Prog. Nucl. Energy 98 (2017) 293-300. https://doi.org/10.1016/j.pnucene.2017.04.008
  23. T.T. Hanh, H.T. Huy, N.Q. Hien, Pre-irradiation grafting of acrylonitrile onto chitin for adsorption of arsenic in water, Radiat. Phys. Chem. 106 (2015) 235-241. https://doi.org/10.1016/j.radphyschem.2014.08.004
  24. A. Khan, T. Huq, R.A. Khan, D. Dussault, S. Salmieri, M. Lacroix, Effect of gamma radiation on the mechanical and barrier properties of HEMA grafted chitosanbased films, Radiat. Phys. Chem. 81 (2012) 941-944. https://doi.org/10.1016/j.radphyschem.2011.11.056
  25. P.F. Liu, M.L. Zhai, J.L. Wu, Study on radiation-induced grafting of styrene onto chitin and chitosan, Radiat. Phys. Chem. 61 (2001) 149-153. https://doi.org/10.1016/S0969-806X(00)00389-3
  26. M.P. Perez-Calixto, A. Ortega, L. Garcia-Uriostegui, G. Burillo, Synthesis and characterization of N-vinylcaprolactam/N,N-dimethylacrylamide grafted onto chitosan networks by gamma radiation, Radiat. Phys. Chem. 119 (2016) 228-235. https://doi.org/10.1016/j.radphyschem.2015.10.030
  27. H.C. Ge, T.T. Hua, Synthesis and characterization of poly(maleic acid)-grafted crosslinked chitosan nanomaterial with high uptake and selectivity for Hg(II) sorption, Carbohydr. Polym. 153 (2016) 246-252. https://doi.org/10.1016/j.carbpol.2016.07.110
  28. K. Jantanasakulwong, N. Leksawasdi, P. Seeuriyachan, S. Wongsuriyasak, C. Techapun, T. Ougizawa, Reactive blending of thermoplastic starch and polyethylene-graft-maleic anhydride with chitosan as compatibilizer, Carbohydr. Polym. 153 (2016) 89-95. https://doi.org/10.1016/j.carbpol.2016.07.091
  29. X.C. Shen, L.Y. Zhang, X.Q. Jiang, Y. Hu, J. Guo, Reversible surface switching of nanogel triggered by external stimuli, Angew. Chem. Int. Ed. 46 (2007) 7104-7107. https://doi.org/10.1002/anie.200701368
  30. V. Singh, D.N. Tripathi, A. Tiwari, R. Sanghi, Microwave synthesized chitosangraft- poly(methylmethacrylate): an efficient $Zn^{2+}$ ion binder, Carbohydr. Polym. 65 (2006) 35-41. https://doi.org/10.1016/j.carbpol.2005.12.002
  31. H.L. Wang, H.Q. Tang, Z.T. Liu, X. Zhang, Z.P. Hao, Z.W. Liu, Removal of cobalt(II) ion from aqueous solution by chitosanemontmorillonite, J. Environ. Sci. 26 (2014) 1879-1884. https://doi.org/10.1016/j.jes.2014.06.021
  32. J. Dong, J. Hu, J.L. Wang, Radiation-induced grafting of sweet sorghum stalk for copper(II) removal from aqueous solution, J. Hazard. Mater. 262 (2013) 845-852. https://doi.org/10.1016/j.jhazmat.2013.09.060
  33. J.P. Wang, Y.Z. Chen, S.J. Zhang, H.Q. Yu, A chitosan-based flocculant prepared with gamma-irradiation-induced grafting, Bioresour. Technol. 99 (2008) 3397-3402. https://doi.org/10.1016/j.biortech.2007.08.014
  34. M.H. Casimiro, M.L. Botelho, J.P. Leal, M.H. Gil, Study on chemical, UV and gamma radiation-induced grafting of 2-hydroxyethyl methacrylate onto chitosan, Radiat. Phys. Chem. 72 (2005) 731-735. https://doi.org/10.1016/j.radphyschem.2004.04.029
  35. H.I. Melendez-Ortiz, C. Alvarez-Lorenzo, A. Concheiro, V.M. imenez-Paez, E. Bucio, Modification of medical grade PVC with N-vinylimidazole to obtain bactericidal surface, Radiat. Phys. Chem. 119 (2015) 37-43.
  36. D.K. Singh, A.R. Ray, Radiation-induced grafting of N,N'-Dimethylaminoethylmethacrylate onto chitosan films, J. Appl. Polym. Sci. 66 (1997) 869-877. https://doi.org/10.1002/(SICI)1097-4628(19971031)66:5<869::AID-APP7>3.0.CO;2-T
  37. E. Repo, L. Malinen, R. Koivula, R. Harjula, M. Sillanpaa, Capture of Co(II) from its aqueous EDTA-chelate by DTPA-modified silica gel and chitosan, J. Hazard. Mater. 187 (2011) 122-132. https://doi.org/10.1016/j.jhazmat.2010.12.113
  38. S.T. Zhuang, Y.N. Yin, J.L. Wang, Simultaneous detection and removal of cobalt ions from aqueous solution by modified chitosan beads, Int. J. Environ. Sci. Technol. (2017), https://doi.org/10.1007/s13762-017-1388-x.

Cited by

  1. Reduced graphene oxide-polyaniline nanocomposite as an efficient adsorbent for solid phase extraction of Co2+ followed by electrothermal atomic absorption spectrometry vol.98, pp.12, 2018, https://doi.org/10.1080/03067319.2018.1523397
  2. Synthesis and Characterization of Ampholytic Flocculant CPCTS-g-P (CTA-DMDAAC) and Its Flocculation Properties for Microcystis Aeruginosa Removal vol.6, pp.5, 2018, https://doi.org/10.3390/pr6050054
  3. Chitosan Derivatives: Introducing New Functionalities with a Controlled Molecular Architecture for Innovative Materials vol.10, pp.3, 2018, https://doi.org/10.3390/polym10030342
  4. Kinetic, equilibrium, and thermodynamic performance of sulfonamides adsorption onto graphene vol.25, pp.36, 2018, https://doi.org/10.1007/s11356-018-3368-1
  5. Bioremoval of Cobalt(II) from Aqueous Solution by Three Different and Resistant Fungal Biomasses vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/8757149
  6. Preparation and characterization of a novel positively charged composite hollow fiber nanofiltration membrane based on chitosan lactate vol.9, pp.8, 2018, https://doi.org/10.1039/c8ra09855g
  7. Adsorptive removal of strontium ions from aqueous solution by graphene oxide vol.26, pp.29, 2019, https://doi.org/10.1007/s11356-019-06149-z
  8. Electro-enhanced removal of cobalt ions from aqueous solution by capacitive deionization vol.697, pp.None, 2018, https://doi.org/10.1016/j.scitotenv.2019.134144
  9. Cesium separation from radioactive waste by extraction and adsorption based on crown ethers and calixarenes vol.52, pp.2, 2020, https://doi.org/10.1016/j.net.2019.08.001
  10. Synthesis of polyamide-6@cellulose microfilms grafted with N-vinylcaprolactam using gamma-rays and loading of antimicrobial drugs vol.27, pp.5, 2018, https://doi.org/10.1007/s10570-020-02986-1
  11. Metal organic framework (La-PDA) as an effective adsorbent for the removal of uranium(VI) from aqueous solution vol.108, pp.3, 2018, https://doi.org/10.1515/ract-2019-3145
  12. Fouling and cleaning protocols for forward osmosis membrane used for radioactive wastewater treatment vol.52, pp.3, 2018, https://doi.org/10.1016/j.net.2019.08.007
  13. Single and Binary Competitive Adsorption of Cobalt and Nickel onto Novel Magnetic Composites Derived from Green Macroalgae vol.37, pp.3, 2018, https://doi.org/10.1089/ees.2019.0305
  14. Obtainment and Characterization of Hydrophilic Polysulfone Membranes by N-Vinylimidazole Grafting Induced by Gamma Irradiation vol.12, pp.6, 2018, https://doi.org/10.3390/polym12061284
  15. Decontamination of contaminated water by palladium catalyst: a short review vol.11, pp.3, 2020, https://doi.org/10.1088/2043-6254/ab9c97
  16. Recent studies in adsorption of Pb(II), Zn(II) and Co(II) using conventional and modified materials:a review vol.55, pp.15, 2018, https://doi.org/10.1080/01496395.2019.1652651
  17. Controlled preparation of a MCC-g-AM/EDA/PA loaded Fe(III) adsorbent by the pre-radiation grafting method and its application for the adsorption removal of phosphate vol.11, pp.11, 2018, https://doi.org/10.1039/d0ra09389k
  18. Removal of nitrate and phosphate ions from aqueous solution using zirconium encapsulated chitosan quaternized beads: Preparation, characterization and mechanistic performance vol.3, pp.None, 2018, https://doi.org/10.1016/j.rsurfi.2021.100010
  19. Adsorptive characteristics of some metal ions on chitosan/zirconium phosphate/silica decorated graphene oxide vol.329, pp.1, 2018, https://doi.org/10.1007/s10967-021-07766-0
  20. Cobalt(II) removal from aqueous solution by modified polymeric adsorbents prepared with induced-graft polymerization: Batch and continuous column study with analysis of breakthrough behaviors vol.24, pp.None, 2018, https://doi.org/10.1016/j.eti.2021.102054
  21. Assessing the radiation-induced graft polymeric adsorbents with emphasis on heavy metals removing: A systematic literature review vol.44, pp.None, 2018, https://doi.org/10.1016/j.jwpe.2021.102371