DOI QR코드

DOI QR Code

Particulate Matter and CO2 Improvement Effects by Vegetation-based Bio-filters and the Indoor Comfort Index Analysis

식생기반 바이오필터의 미세먼지, 이산화탄소 개선효과와 실내쾌적지수 분석

  • Kim, Tae-Han (Department of Environment and Landscaping, College of Industry, Sangmyung University) ;
  • Choi, Boo-Hun (Department of Environment and Landscaping, Graduate School, Sangmyung University) ;
  • Choi, Na-Hyun (Department of Environment and Landscaping, Graduate School, Sangmyung University) ;
  • Jang, Eun-Suk (Climate Change & Agroecology Division, National Institute of Agricultural Sciences, Rural Development Administration)
  • 김태한 (상명대학교 융합기술대학 환경조경학과) ;
  • 최부헌 (상명대학교 일반대학원 환경조경학과) ;
  • 최나현 (상명대학교 일반대학원 환경조경학과) ;
  • 장은숙 (농촌진흥청 국립농업과학원 농업환경부 기후변화생태과)
  • Received : 2018.10.01
  • Accepted : 2018.11.15
  • Published : 2018.12.31

Abstract

BACKGROUND: In the month of January 2018, fine dust alerts and warnings were issued 36 times for $PM_{10}$ and 81 times for PM2.5. Air quality is becoming a serious issue nation-wide. Although interest in air-purifying plants is growing due to the controversy over the risk of chemical substances of regular air-purifying solutions, industrial spread of the plants has been limited due to their efficiency in air-conditioning perspective. METHODS AND RESULTS: This study aims to propose a vegetation-based bio-filter system that can assure total indoor air volume for the efficient application of air-purifying plants. In order to evaluate the quantitative performance of the system, time-series analysis was conducted on air-conditioning performance, indoor air quality, and comfort index improvement effects in a lecture room-style laboratory with 16 persons present in the room. The system provided 4.24 ACH ventilation rate and reduced indoor temperature by $1.6^{\circ}C$ and black bulb temperature by $1.0^{\circ}C$. Relative humidity increased by 24.4% and deteriorated comfort index. However, this seemed to be offset by turbulent flow created from the operation of air blowers. While $PM_{10}$ was reduced by 39.5% to $22.11{\mu}g/m^3$, $CO_2$ increased up to 1,329ppm. It is interpreted that released $CO_2$ could not be processed because light compensation point was not reached. As for the indoor comfort index, PMV was reduced by 83.6 % and PPD was reduced by 47.0% on average, indicating that indoor space in a comfort range could be created by operating vegetation-based bio-filters. CONCLUSION: The study confirmed that the vegetation-based bio-filter system is effective in lowering indoor temperature and $PM_{10}$ and has positive effects on creating comfortable indoor space in terms of PMV and PPD.

본 연구는 일반인에게 안전한 실내공기질 개선수단으로 인식되는 공기정화식물의 효율적 적용을 위해 실내공조에 요구되는 총풍량 확보가 가능한 식생기반 바이오필터 시스템을 제안하고자 했다. 시스템의 정량적 성능평가는 강의실형태의 실험실 체적 $332.73m^3$ 내 16명의 재실자 조건에서 목업단위 시스템의 공조 성능, 실내공기질 및 쾌적지표 개선효과에 대한 시계열 분석으로 진행되었다. 우선, 시스템 구동을 통해 총 $1,411.22m^3/h$의 유출 총풍량을 확보하여, 4.24 ACH의 환기율을 제공할 수 있었다. 실내온도는 $1.6^{\circ}C$, 흑구온도는 $1.0^{\circ}C$ 감소가 확인되었으며, 상대습도는 24.4% 상승한 최대 82.0%까지 증가하였다. 상대습도 급증에 따른 쾌적도 감소현상은 송풍기 구동에 따라 발생되는 실내기류로 상쇄되는 것으로 판단된다. 또한, 시스템 가동에 따른 공기질 개선지표 중 $PM_{10}$은 39.5% 감소한 평균 $22.11{\mu}g/m^3$을 기록하였다. 반면, $CO_2$는 최대 1,329 ppm까지 지속적으로 농도가 상승했는데, 이는 광도조건이 광보상점을 만족하지 못해 적용 식물과 재실자에서 방출되는 $CO_2$가 처리되지 못한 것으로 해석된다. 실내쾌적지표의 경우 PMV는 평균 83.6 % 감소된 -0.082, PPD는 평균 47.0% 감소된 5.41%에 수렴하여 식생기반 바이오필터 구동에 의해 높은 쾌적범위의 실내공간조성이 가능한 것으로 판단되었다. 본 연구의 한계는 소수 참여인원과 단기간 실험으로 인하여 시스템의 성능 규명이 제한적인 부분이었으며, 보다 장기간의 실험을 통해 바이오필터에 도입된 식생의 생육상태에 따른 압력손실 변화, 미세먼지 저감에 대한 구체적인 메커니즘 규명 등의 후속연구가 진행되어야 할 것이다.

Keywords

References

  1. Aydogan, A., & Montoya, L. D. (2011). Formaldehyde removal by common indoor plant species and various growing media. Atmos Environ, 45(16), 2675-2682. https://doi.org/10.1016/j.atmosenv.2011.02.062
  2. Han, S. W., & Sohn, J. Y. (2005). Influence of indoor thermal comport on foliage plants. Journal of the Korean institute of interior landscape architecture, 7(1), 9-16.
  3. Im, Y. B., Jung, G. J., Seo, M. H., & Oh, G. S. (2010). Characteristics of Indoor Solar Irradiance and Temperature with Potted Plants Positioned Nearby Window in Room during Summer day, The Regional Association of Architectural Institute of Korea, 12(4), 253-260.
  4. Irga, P. J., Torpy, F. R., & Burchett, M. D. (2013). Can hydroculture be used to enhance the performance of indoor plants for the removal of air pollutants? Atmospheric Environment, 77, 267-271. https://doi.org/10.1016/j.atmosenv.2013.04.078
  5. Irga, P. J., Paull, N. J., Abdo, P., & Torpy, F. R. (2017). An assessment of the atmospheric particle removal efficiency of an inroom botanical biofilter system, Building and Environment, 115, 281-290. https://doi.org/10.1016/j.buildenv.2017.01.035
  6. Joint ministry (2017) Comprehensive plan for particle matter control.
  7. Kim, S. H. , Sung, J. Y., & Chung, K. S. (2015). A Study on the application of simulation-based simplified PMV regression model for indoor thermal comfort control. Korean Society for Energy, 24(1), 69-77.
  8. Kim, T. H., Lee, S. D., & Park, S. E., (2017). A study on pressure loss by the material of AHU-linked vegetation Bio-filter and its operational energy efficiency, Journal of People Plants and Environment, 20(5), 485-494. https://doi.org/10.11628/ksppe.2017.20.5.485
  9. Kwon, K. J., & Park, B. J. (2017). Effects of indoor greening method on temperature, relative humidity and particulate matter concentration, Journal of the Korean Institute of Landscape Architecture, 45(4), 1-10. https://doi.org/10.9715/KILA.2017.45.1.001
  10. Kwon, K. J., & Park, B. J. (2018). Particulate matter removal of indoor plants, dieffenbachia amoena 'marianne' and spathiphyllum spp. according to light intensity, Journal of the Korean Institute of Landscape Architecture, 46(2), 62-68. https://doi.org/10.9715/KILA.2018.46.2.062
  11. Llewellyn, D., Darlington, A., van Ras, N., Kraakman, B., & Dixon, M. (2008). A hybridized membrane- botanical biofilter for improving air quality in occupied spaces, 37h COSPAR Scientific Assembly, 13-20 July, Montreal, 2008, 1813.
  12. Long, C. M., Suh, H. H., Kobzik, L., Catalano, P. J., Ning, Y. Y., & Koutarakis, P. (2001). A pilot investigation of the relative toxicity of indoor and outdoor fine particles: in vitro effects of endotoxin and other particulate properties. Environ Health Perspect, 109(10), 1019-1026. https://doi.org/10.1289/ehp.011091019
  13. Mo, P. H., Kang, D. H., Choi, D. H., Sun, J. M., Yeo, M. S., & Kim, K. W. (2008). Study on thermal comfort and energy consumption characteristic in PMV controlled space. Korea Institute of Architectural Sustainable Environment and Building Systems, 2008(10), 70-73.
  14. Park, S. A., Kim. M. G., Yoo, M. H,, Oh, M. M., & Son, K. C. (2010). Plant Physiological Responses in Relation to Temperature, Light Intensity, and $CO_2$ Concentration for the Selection of Efficient Foliage Plants on the Improvement of Indoor Environment. Korean journal of horticultural science & technology, 28(6), 928-936.
  15. Park, S. J., Kim, J. H., Joe, G. S., Yeo, M. S., & Kim, K. W. (2015). Analysis of Size-resolved Indoor and Outdoor Particle Sources to Indoor Particles in a Child-care Center. The Architectural Institute of Korea, 31(12), 215-222.
  16. Pettit, T., Irga, P. J., Abdo, P., & Torpy, F. R. (2017). Do the plants in functional green walls contribute to their ability to filter particulate matter? Building and Environment, 125, 299-307. https://doi.org/10.1016/j.buildenv.2017.09.004
  17. Son, K. C., Kim, M. K., Park, S. H., Chang, M. K. (1998). Effect of Foliage Plant Pachira aquatica on the Change of Indoor Temperature and Humidity. Korean journal of horticultural science & technology, 16(3) 377-380.
  18. Torpy, F., Clements, N., Pollinger, M., Dengel, A., Mulvihill, I., He, C., & Irga, P., (2018) Testing the single-pass VOC removal efficiency of an active green wall using methyl ethyl ketone (MEK), Air Quality, Atmosphere & Health, 11(2), 163-170. https://doi.org/10.1007/s11869-017-0518-4