DOI QR코드

DOI QR Code

Photocatalytic Properties of TiO2 According to Manufacturing Method

제조방법에 따른 TiO2의 광촉매 특성 분석

  • Lee, Hong Joo (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Park, Yu Gang (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Lee, Seung Hwan (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Park, Jung Hoon (Department of Chemical and Biochemical Engineering, Dongguk University)
  • 이홍주 (동국대학교 화공생물공학과) ;
  • 박유강 (동국대학교 화공생물공학과) ;
  • 이승환 (동국대학교 화공생물공학과) ;
  • 박정훈 (동국대학교 화공생물공학과)
  • Received : 2017.11.08
  • Accepted : 2017.12.15
  • Published : 2018.04.01

Abstract

$TiO_2$ photocatalyst powders were prepared by chlorination method and sol-gel method. Specific surface area and crystalline (i.e., anatase and rutile) of the catalyst varied depending on manufacture conditions and method. TTIP-sol photocatalyst had higher methylene blue (MB) decomposition characteristics than photocatalyst from chlorination method and TBOT-sol. MB removal efficiency from aqueous solution with TTIP-sol photocatalyst was over 90%. Experimental results showed that the $TiO_2$ photocatalyst with a single anatase phase and a large specific surface area had high decomposition characteristics of organic materials.

염소법과 졸-겔법으로 $TiO_2$ 광촉매 분말을 제조하였다. 제조방법 및 조건에 따라 촉매의 결정상 형태(아나타제와 루타일)와 비표면적이 변화하는 것을 알 수 있었다. TTIP-sol로 제조한 광촉매가 염소법이나 TBOT-sol로 제조한 광촉매에 비해 methylene blue (MB) 분해 특성이 더 높았으며, 수용액상의 90% 이상의 MB를 제거할 수 있었다. 실험 결과를 통해 $TiO_2$ 광촉매는 단일 아나타제상와 큰 비표면적을 가지면 유기물 분해 특성을 향상될 수 있는 것을 확인하였다.

Keywords

References

  1. Pyo, S. H., Kim, M. J., Lee, S. C. and Yoo, C. K., "Evaluation of Environmental and Economic Impacts of Advanced Wastewater Treatment Plants with Life Cycle Assessment," Korean Chem. Eng. Res., 52(4), 503-515(2014). https://doi.org/10.9713/kcer.2014.52.4.503
  2. Andreozzi, R., Caprio, V., Insola, A. and Marotta, R., "Advance Oxidation ProCesses (AOP) for Water Purification and Recovery," Catalysis Today, 53(1), 51-59(1999). https://doi.org/10.1016/S0920-5861(99)00102-9
  3. Fukahori, S., Ichiura, H., Kitaoka, T. and Tanaka, H., "PhotoCatalytic Decomposition of Bisphenol A in Water Using Composite $TiO_2$-Zeolite Sheets Prepared by a Papermaking Technique," Enviro. Sci. Technol., 37, 1048-1051(2003). https://doi.org/10.1021/es0260115
  4. Jihoon, J., "Development of AOP sing PhotoCatalysts," Theo. & Appli. Chem. Eng., 12(2), 1427-1430(2006).
  5. Yesol, K., Bai, C. and Young-Seak, L., "Synthesis and Photodecomposition of N-Doped $TiO_2$ Surface Treated by Ammonia," Appl. Chem. Eng., 23(3), 308-312(2012).
  6. Athanasekou, C. P., Moustakas, N. G., Morales-Torres, S., Pastrana-Martinez, L. M., Figueiredo, J. L., Faria, J. L., Silva, A. M.T., Dona- Rodriguez, J. M., Romanos, G. E., and Falaras, P., "Ceramic PhotoCatalytic Membranes for Water Filtration under UV and Visible Light," Appl. Catal. B: Environ., 178, 12-19(2015). https://doi.org/10.1016/j.apcatb.2014.11.021
  7. Jia, J., Li, D., Wan, J., and Yu, X. "Characterization and Mechanism Analysis of graphite/C-doped $TiO_2$ Composite for Enhanced PhotoCatalytic Performance," J. Ind. Eng. Chem., 33, 162-169(2016). https://doi.org/10.1016/j.jiec.2015.09.030
  8. Vautier, M., Guillard, C., and Herrmann, J. M., "PhotoCatalytic Degradation of Dyes in Water: Case Study of Indigo and of Indigo Carmine," J. Catal., 201(1), 46-59(2001). https://doi.org/10.1006/jcat.2001.3232
  9. Min-Su, C., O-Bong, Y., Hung-Ho, C. and Seoung-Ki, B., "A Study on the Preparation and Characterization of $TiO_2$ PhotoCatalyst by Sol-gel Method," Appl. Chem., 4(1) 149-152(2000).
  10. Yu, W., Yuan, S., Li, Y., Zhang, Q., and Wang, H., "Preparation of $TiO_2$ Nanoparticle/Nanotube Composites via a Vapor Hydrolysis Method and Their PhotoCatalytic Activities," Mater. Res. Bull., 36, 1957-1965(2001). https://doi.org/10.1016/S0025-5408(01)00674-2
  11. Bacsa, R. R., and Gratzel, M., "Rutile Formation in Hydrothermally Crystallized Nanosized Titania," J. Am. Ceram. Soc., 79(8), 2185- 2188(1996). https://doi.org/10.1111/j.1151-2916.1996.tb08956.x
  12. Kim, D. S., Han, S. J. and Kwak, S. Y., "Synthesis and PhotoCatalytic Activity of Mesoporous $TiO_2$ with The Surface Area, Crystallite Size, and Pore Size," J. Coll. Inter. Sci., 316(1), 85-91 (2007). https://doi.org/10.1016/j.jcis.2007.07.037

Cited by

  1. 태양광 모듈 표면 온도 제어에 따른 백시트 박리 거동 vol.29, pp.11, 2019, https://doi.org/10.3740/mrsk.2019.29.11.703
  2. Pilot-Scale Testing of UV-A Light Treatment for Mitigation of NH 3 , H 2 S, GHGs, VOCs, Odor, and O 3 Inside the Poultry Barn vol.8, pp.None, 2018, https://doi.org/10.3389/fchem.2020.00613
  3. Effects of UV-A Light Treatment on Ammonia, Hydrogen Sulfide, Greenhouse Gases, and Ozone in Simulated Poultry Barn Conditions vol.11, pp.3, 2018, https://doi.org/10.3390/atmos11030283