DOI QR코드

DOI QR Code

Effects of the Particle Size and Shape of Silver Nanoparticles on Optical and Electrical Characteristics of the Transparent Conductive Film with a Self-assembled Network Structure

은 나노입자의 크기 및 형태가 자가조립 망상구조를 갖는 투명전도성 필름의 광학 및 전기 특성에 미치는 영향

  • Received : 2017.10.20
  • Accepted : 2017.12.21
  • Published : 2018.04.10

Abstract

The effect of the average particle size and shape of silver nanoparticles for the transparent conductive film (TCF) was studied. Optical and electrical properties of silver conductive lines coated on the polyethylene terephthalate (PET) film was also measured. Silver nanoparticles produced by Ag-CM, Ag-ME, Ag-EE methods showed an excellent conductivity compared to those produced by Ag-EB, Ag-CR and Ag-PL methods, but a little difference in the transparency. In the case of the former three silver nanoparticles, the average particle size was about 80 nm or less and the size was uniform. For the latter case, the severe agglomeration phenomena of particles was observed and the average particle size was 100 nm or more. This result was consistent with the result of the uniformity of the pattern shape and thickness on conductive line patterns observed by SEM. Therefore, it was confirmed that the electrical characteristics could be obtained when the average particle size of silver nanoparticles is smaller and the uniformity of the particles is maintained.

투명전도성필름(transparent conductive film, TCF) 제조를 위해 사용되는 은 나노입자의 평균입자 크기 및 형태가 폴리에틸렌 테리프탈레이트(polyethylene terephthalate, PET) 필름 위에 코팅된 은 전도성 라인의 광학 및 전기특성에 미치는 영향을 연구하였다. Ag-CM, Ag-ME 및 Ag-EE 방식으로 제조한 은 나노입자가 Ag-EB, Ag-CR 및 Ag-PL 방식으로 제조한 은 나노입자보다 투명도는 차이가 없으나 전도도에서 우수한 특성을 보였다. 이는 입자의 크기가 앞에 언급한 세 가지 경우 평균 입도가 약 80 nm 이하이고 입도의 균일도가 양호한 반면, 뒤에 언급한 세 가지 경우 평균입도가 100 nm 이상이며 입자의 뭉침 현상이 심하게 나타난 결과와 관련이 있음을 확인하였다. 이 결과는 PET 필름 위에 코팅을 하고 건조시켜 제조한 패턴을 각각의 시료별로 SEM으로 정면과 측면에서 관찰하였을 때, 패턴의 형상 및 두께의 균일도 측면에서 나타난 결과와 동일하였다. 따라서 은 나노입자의 평균입자 크기가 작고 입자의 균일성이 유지될수록 보다 우수한 전기 특성을 나타냄을 확인하였다.

Keywords

References

  1. S. Yeo, H. Lee, and S. Jeong, Antibacterial effect of nanosized silver colloidal solution on textile fabrics, J. Mater. Sci., 38, 2143-2147 (2003). https://doi.org/10.1023/A:1023767828656
  2. J. Zhang, P. Chen, C. Sun, and X. Hu, Sonochemical synthesis of colloidal silver catalysts for reduction of complexing silver in DTR system, Appl. Catal A, 266, 49-54 (2004). https://doi.org/10.1016/j.apcata.2004.01.025
  3. W. Zhang, X. Qiao, J. Chen, and H. Wang, Preparation of silver nanoparticles in water-in-oil AOT reverse micelles, J. Colloid Interface Sci., 302(1), 370-373 (2006). https://doi.org/10.1016/j.jcis.2006.06.035
  4. N. Giri, R. K. Natarajan, S. Gunasekaran, and S. Shreemathi, NMR and FTIR spectroscopic study of blend behavior of PVP and nano silver particles, Arch. Appl. Sci. Res., 3(5), 624-630 (2011).
  5. H. R. Ghorbani, A. A. Safekordi, H. Attar, and S. M. Sorkhabadi, Biological and non-biological methods for silver nanoparticles synthesis, Chem. Biochem. Eng. Q., 25(3), 317-326 (2011).
  6. G. R. Nasretdinova, R. R. Fazleeva, R. K. Mukhitova, I. R. Nizameev, M. K. Kadirov, A. Y. Ziganshina, and V. V. Yanilkin, Electrochemical synthesis of silver nanoparticles in solution, Electrochem. Commun., 50, 69-72 (2015). https://doi.org/10.1016/j.elecom.2014.11.016
  7. Z. Moradi, K. Akhbaria, A. Phuruangrat, and F. Costantino, Studies on the relation between the size and dispersion of metallic silver nanoparticles and morphologies of initial silver (I) coordination polymer precursor, J. Mol. Struct., 1133, 172-178 (2017). https://doi.org/10.1016/j.molstruc.2016.12.001
  8. M. Sumithra, Y. Aparna, P. R. Rao, K. S. Reddy, and P. R. Reddy, Morphological change of silver nanoparticles by the effect of synthesis parameters, Mater. Today, 3(6), 2278-2283 (2016). https://doi.org/10.1016/j.matpr.2016.04.137
  9. C. He, L. Liu, Z. Fang, J. Li, J. Guo, and J. Wei, Formation and characterization of silver nanoparticles in aqueous solution via ultrasonic irradiation, Ultrason. Sonochem., 21(2), 542-548 (2014). https://doi.org/10.1016/j.ultsonch.2013.09.003
  10. K. M. M. A. El-Nour, A. Eftaiha, A. Al-Warthan, and R. A. A. Ammar, Synthesis and applications of silver nanoparticles, Arab. J. Chem., 3(3), 135-140 (2010). https://doi.org/10.1016/j.arabjc.2010.04.008
  11. B. Khodashenas and H. R. Ghorbani, Synthesis of silver nanoparticles with different shapes, Arab. J. Chem.., 8(1), 1-16 (2015). https://doi.org/10.1016/j.arabjc.2014.07.005
  12. S. B. Sim, D. S. Bae, and J. D. Han, Preparation of silver nanoparticles by chemical reduction-protection method using 1-decanoic acid and tri-n-octylphosphine and their application in electrically conductive silver nanopaste, Appl. Chem. Eng., 27(1), 68-73 (2016). https://doi.org/10.14478/ace.2015.1126
  13. J. J. Lee, Size and dispersion characteristics of silver nanoparticles prepared using liquid phase reduction method, J. Korean Acad. Ind. Coop. Soc., 17(5), 10-16 (2016).
  14. M. Oliveira, D. Ugarte, D. Zanchet, and A. Zarbin, Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles, J. Colloid Interface Sci., 292(2), 429-435 (2005). https://doi.org/10.1016/j.jcis.2005.05.068
  15. X. Hou, X. Zhang, S. Chen, Y. Fang, J. Yan, N. Li, and P. Qi, Facile synthesis of SERs active Ag nanoparticles in the presence of tri-n-octylphosphine sulfide, Appl. Surf. Sci., 257, 4935-4940 (2011). https://doi.org/10.1016/j.apsusc.2010.12.154
  16. A. Slistan-Grijalva, R. Herrera-Urbina, J. F. Rivas-Silva, M. Avalos-Borja, F. F. Castillon-Barraza, and A. Posada-Amarillas, Synthesis of silver nanoparticles in a polyvinylpyrrolidone (PVP) paste, and their optical properties in a film and in ethylene glycol, Mater. Res. Bull., 43, 90-96 (2008). https://doi.org/10.1016/j.materresbull.2007.02.013
  17. H. Wang, X. Qiao, J. Chen, and S. Ding, Preparation of silver nanoparticles by chemical reduction method, Colloids Surf. A, 256, 111-115 (2005). https://doi.org/10.1016/j.colsurfa.2004.12.058
  18. D. L. V. Hyning, W. G. Klemperer, and C. F. Zukoski, Silver nanoparticle formation: predictions and verification of the aggregative growth model, Langmuir, 17, 3128-3135 (2001). https://doi.org/10.1021/la000856h
  19. W. Zhang, X. Quao, J. Chen, and Q. Chen, Self-assembly and controlled synthesis of silver nanoparticles in SDS quaternary microemulsion, Mater. Lett., 62, 1689-1692 (2008). https://doi.org/10.1016/j.matlet.2007.09.060
  20. S. S. Mansouri and S. Ghader, Experimental study on effect of different parameters on size and shape of triangular silver nanoparticles prepared by a simple and rapid method in aqueous solution, Arab. J. Chem., 2, 47-53 (2009). https://doi.org/10.1016/j.arabjc.2009.07.004
  21. H. Qi, D. A. Alexson, O. J. Glembocki, and S. M. Prokes, Synthesis and oxidation of silver nano-particles, Proc. SPIE Int. Soc. Opt. Eng., 7947, Y1-Y10 (2011).