DOI QR코드

DOI QR Code

A Lightweight Design of the Spar cap of Wind Turbine Blades with Carbon Fiber Composite and Ply Reduction Ratio

탄소섬유 복합재 및 두께 축소율을 이용한 풍력 블레이드 스파캡 경량화 설계

  • Kim, Do-Won (Department of mechanical Engineering, Chonbuk National Univ.) ;
  • Jeong, Gyu (Department of mechanical Engineering, Chonbuk National Univ.) ;
  • Lim, Jae Hyuk (Department of mechanical Engineering, Chonbuk National Univ.) ;
  • Lim, Jun-Woo (Department of mechanical Engineering, Chonbuk National Univ.) ;
  • Yu, Byeong-Min (Department of mechanical Engineering, Chonbuk National Univ.) ;
  • Lee, Kil-Sung (Department of mechanical Engineering, Chonbuk National Univ.)
  • 김도원 (전북대학교 기계공학과) ;
  • 정규 (전북대학교 기계공학과) ;
  • 임재혁 (전북대학교 기계공학과) ;
  • 임준우 (전북대학교 기계공학과) ;
  • 유병민 (전북대학교 기계공학과) ;
  • 이길성 (전북대학교 기계공학과)
  • Received : 2018.02.27
  • Accepted : 2018.04.19
  • Published : 2018.04.30

Abstract

In this paper, a lightweight design of the spar cap of 2MW wind turbine blade was carried out using the ply reduction ratio (PRR) and CFRP with a trade-off study. The spar cap is one of the most critical factor in determining the mechanical performance of the blade. Tsai-Wu and Puck fracture theory were used to determine the fracture. As a result, the CFRP composite material could be lighter in terms of weight by about 30% than GFRP composite material under the same conditions. Based on the analytical results, we derive the optimal value of the laminate thickness of the composite material and present the structural performance improvement and the lightweight design result.

본 논문에서는 2MW급 풍력 블레이드의 스파캡을 탄소복합재료, 두께축소율(PRR) 및 상쇄연구(Trade-off study)를 이용해서 경량화 설계를 수행했다. 블레이드 스파캡은 블레이드의 기계적 건전성을 결정하는 가장 핵심적인 요소이다. 가벼우면서도 기계적 신뢰성을 확보할 수 있는 블레이드 스파캡의 형상을 도출하기 위해 주어진 설계하중으로 스파캡의 두께를 변화시키면서 반복적인 구조해석을 실시한다. 파손여부를 판정하기 위해서 Tsai-Wu 및 Puck 파손이론을 사용하였으며, 그 결과 GFRP 복합재료보다 CFRP 복합재료가 동일한 조건에서 약 30% 무게를 경량화 할 수 있었다. 해석 결과를 바탕으로 복합재료 적층두께의 최적값을 도출하여 구조적 성능 향상 및 경량화 된 설계 결과를 제시한다.

Keywords

References

  1. Yun-Jung Jang, Ji-Won Jin, Ki-Weon Kang, "Structural Optimization considering Stress and Weight for Wind Turbine Composite Blade", Journal of The Korean Society of Mechanical Engineers, pp.19-20, April 2017
  2. Ji-Hyun Lee, Sung-Young Moon, Yeon-Seung Lee, Young-Gyun Kim, "Weight Reduction Optimization for 5MW Offshore Wind Turbine Blade using Carbon Fiber", Journal of Wind Energy, Volume 3, Issue 1, pp.27-35, 2012
  3. Chan-Woong Choi, Ji-Won Jin, Ki-Weon Kang, "Structural Optimization for Small Scale Vertical-Axis Wind Turbine Blade using Response Surface Method", Journal of The Korean Society of Mechanical Engineers, pp.22-27, August 2013
  4. Chang-Duck Kong, Min-Woong Kim, Hyun-Bum Park, "Study on Aerodynamic and Structural Design of High Efficiency and Lightweight Composite Blades of 1MW Class HAWT", Journal of The Korean Society for Aeronautical and Space Sciences, pp.769-773, November 2011.
  5. Hyung-il Kwon, Dong-Ok Ryu, Ju-Youl Yoo, Oh-Jun Kwon, "Aerodynamic Sectional Design Optimization of Wind Turbine Rotor Blade Considering Elastic Structural Deformation", Journal of TThe Korean Society For Aeronautical And Space Sciences, pp.1276-1283, November 2011
  6. Jun-Woo Choi, Hyeon-U Heo, Kwang-Won Kim, Doo-Man Kim, "Analysis of Wind Turbine Blade Deformation for Cross Section Shapes", Journal of The Korean Society for Fluid Machinery, pp.98-103, November 2012
  7. Myung-Chan Cha, Sang-Woo Kim, Min-Soo Jeong, In Lee, Seung-Jae Yoo, Cheon-Jin Park, "FThickness Optimization for Spar Cap of Composite Tidal Current Turbine Blade using SQP Method", Journal of Composites Research, Volume 26, Issue 4, pp.207-212, 2013 https://doi.org/10.7234/composres.2013.26.4.207
  8. Dong-hoon Kim, Yoo-jeong Noh, Eun-Ho Choi, O-Kang Lim, Jin-Rae Cho, "Fluid-Structure Interaction Analysis of 5-MW Wind Turbine Blades", Journal of The Korean Society of Mechanical Engineers, pp.313-314, April 2014
  9. http://blades.windnovation.com
  10. ECSS, "Spacecraft mechanical loads analysis handbook", ECSS-E-HB-32-26A, 2013
  11. Puck, A. & Schurmann, H., "Failure Analysis of FRP Laminates by Means of Physically based Phenomenological Models", Composites Science and Technology, 58, pp.1045-1067. 1998 https://doi.org/10.1016/S0266-3538(96)00140-6
  12. Puck, A. & Schurmann, H., "Failure Analysis of FRP Laminates by Means of Physically based Phenomenological Models", Composites Science and Technology, 62, pp.1633-1662. 2002 https://doi.org/10.1016/S0266-3538(01)00208-1