DOI QR코드

DOI QR Code

A study on freeboard assessment of agricultural reservoirs considering climate change

기후변화를 고려한 농업용 저수지 여유고 평가에 관한 연구

  • 최지혁 (서울시립대학교 토목공학과) ;
  • 문영일 (서울시립대학교 토목공학과)
  • Received : 2017.11.01
  • Accepted : 2018.02.02
  • Published : 2018.04.30

Abstract

Domestic agricultural reservoir dam facilities are difficult to manage water resources because of the in summer rainfall increase due to aging and climate change, it is expected that the dam risk will be large due to the overflow. In this study, author selected study basin in order to evaluate hydrological safety of agricultural reservoir dam facilities. And calculated the probable rainfall, Present PMP, Future PMP considering climate change. Also, author carried quantitative analysis out for increasing rainfall due to climate change, analyze freeboard assessment of agricultural reservoir by calculate flood discharge, reservoir flood routing according to rainfall scenarios. As a result of evaluate hydrological safety of agricultural reservoir dam facilities using Future PMP considering climate change, Gosam, Kumkwang, Miho, Cheongcheon reservoir had the Highest Water Level over the design flood level, it is analyzed that it would be vulnerable to overflow risk.

국내 농업용 저수지 댐 시설물은 노후화 및 기후변화로 인한 여름철 강우량 증가로 인해 수자원관리에 대한 어려움뿐만 아니라 댐 월류에 따른 피해위험이 높을 것으로 전망된다. 따라서 본 연구에서는 기후변화를 고려한 농업용 저수지 수문학적 안전성을 평가하기 위해 농업용 저수지 1종 댐 시설물을 대상유역으로 선정하였으며, 유역별 확률강우량, 기존에 제시된 Present PMP, 기상청 기후변화시나리오에 따른 Future PMP를 산정하였다. 또한, 기후변화에 따라 증가하는 강우량을 정량적으로 분석하고, 홍수량산정 및 저수지홍수추적을 실시하여 강우시나리오에 따른 농업용 저수지의 여유고를 분석하였다. 기후변화를 고려한 Future PMP를 이용하여 농업용 저수지 댐 시설물의 수문학적 안전성을 평가한 결과, 고삼, 금광, 미호, 청천저수지는 설계홍수위 이상의 최고수위가 발생함에 따라 월류위험에 취약할 것으로 분석되었다.

Keywords

References

  1. Beauchamp, J., Leconte, R., Trudel, M., and Brissette, F. (2013). "Estimation of the summer-fall PMP and PMF of a northern watershed under a changed climate." Water Resources Research, Vol. 49, No. 6, pp. 3852-3862. https://doi.org/10.1002/wrcr.20336
  2. Choi, B. G. (2007). "Application of water resources through dam rehabilitation." Journal of Water Resources Association, Vol. 40, No. 5, pp. 88-95.
  3. Hong, S. T. (2007). "The civil engineering and construction state and Dam construction." Journal of Social Science Research, Vol. 65, No. 1, pp. 223-246.
  4. Jeong, H. G., Kim, S. J., and Ha, R. (2013). "Assessment of climate change impact on storage behavior of Chungju and the regulation dams using SWAT model." Journal of Korean Water Resources Association, Vol. 46, No. 12, pp. 1235-1247. https://doi.org/10.3741/JKWRA.2013.46.12.1235
  5. Kim, H. S., Bea, J. J., Kim, Y. G., and Lee, J. H. (2009). "An addedmass modification method using experimental and numerical frequency analysis for floodgate subjected to hydro-dynamic loading." Journal of Korean Society of Civil Engineers, Vol. 29, No. 6, pp. 607-616.
  6. Kim, W. Y., Kim, N. R., and Lim, J. Y. (2017). "A study on the experiment for classification of construction material properties of reservoir." Journal of Korean Society of Hazard Mitigation, Vol. 17, No. 2, pp. 219-230.
  7. KISTEC (Korea Infrastructure Safety Corporation) (2015). '14-'15 casebook of evaluation result after carrying out detailed and in-depth inspection.
  8. KRC (Korea Rural Community Corporation) (2002). Agricultural infrastructure design standard.
  9. KRC (Korea Rural Community Corporation) (2004). Report of hydrological survey support project in existing reservoir.
  10. Kunkel, K. E., Karl, T. R., Easterling, D. R., Redmond, K., Young, J., Yin, X., and Hennon, P. (2013). "Probable maximum precipitation and climate change." Geophysical Research Letters, Vol. 40, No. 7, pp. 1402-1408. https://doi.org/10.1002/grl.50334
  11. Lee, K. Y., Kim. H. D., Jung, K. K., Yun, S. W., Baek, S. H., Park, J. C., Lee, J. H., and Yu, C. (2008). "A model test to develope the spillway tainter gate for the agricultural small dam." Journal of Agriculture & Life Science, Vol. 42, No. 1, pp. 61-69.
  12. Lee, Y. J., Jang, J. Y., Park, M. J., Lee, Y. G., and Kim, S. D. (2017b). "Estimation of PMP in nuclear power plants area considering climate change." Journal of Korean Society Hazard Mitigation, Vol. 17, No. 6, pp. 549-557. https://doi.org/10.9798/KOSHAM.2017.17.6.549
  13. Lee, Y. J., Jo, D. J., and Kim, S. D. (2017a). "Future PMP estimation of Chungjudam watershed under KMA climate change scenarios." Journal of Korean Society Hazard Mitigation, Vol. 17, No. 1, pp. 365-373. https://doi.org/10.9798/KOSHAM.2017.17.1.365
  14. Lee, Y. J., Park, Y. K., Kim, E. S., and Kim, S. D. (2016). "Projection of Korean probable maximum precipitation under future climate change scenarios." Advances in Meteorology, Vol. 2016, Article ID 3818236, 16 pages.
  15. MCT (Ministry of Construction and Transportation) (2004). Renewable report of PMP map in Korea.
  16. Park, J. S., Rhee, K. H., Lee, J. J., Shim, C. S., Jin, W. G., and Hu, S. Y. (2015). "Development of hydrological safety evaluation model for agricultural reservoir." Journal of Wetlands Research, Vol. 17, No. 2, pp. 130-138. https://doi.org/10.17663/JWR.2015.17.2.130
  17. Park, J. Y., Joh, H. K., Jung, I. K., Jung, K. S., Lee, J. H., Kang, B. S., Yoon, C. J., and Kim, S. J. (2010). "Modeling downstream flood damage prediction followed by dam-break of small agricultural reservoir." Journal of the Korean Society, Vol. 54, No. 6, pp. 63-73.
  18. WMO (World Meteorological Organization) (2009). Manual for the estimation of Probable Maximum Precipitation (PMP). WMONo. 1045, Geneva, Switzerland.