DOI QR코드

DOI QR Code

The Estimation of Sand Dam Storage using a Watershed Hydrologic Model and Reservoir Routing Method

유역 수문모형과 저수지 추적기법을 연계한 샌드댐 저류량 산정

  • Chung, Il-Moon (Dept. of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT)) ;
  • Lee, Jeongwoo (Dept. of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT)) ;
  • Lee, Jeong Eun (Dept. of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT)) ;
  • Choi, Jung-Ryel (Research and Development Team, SDM_ENC Co., Ltd.)
  • 정일문 (한국건설기술연구원 국토보전연구본부) ;
  • 이정우 (한국건설기술연구원 국토보전연구본부) ;
  • 이정은 (한국건설기술연구원 국토보전연구본부) ;
  • 최정렬 ((주)에스디엠이앤씨 기술연구소)
  • Received : 2018.10.31
  • Accepted : 2018.11.30
  • Published : 2018.12.31

Abstract

The implementation of drought measures in the upstream areas of river basins is seldom considered with respect to water supply. However, the demand for such measures is increasing rapidly owing to the occurrence of severe droughts, and interventions on streams and the water supply are needed. Physical interventions are an option to prevent streams from becoming dry and to maintain stream water flow, but dam construction is challenging because of environmental and ecological considerations. Here, a feasibility study was conducted to assess the potential effects of sand dams, which are widely used in arid regions in Africa. The SWAT-K model, which is a hydrologic model used for Korean watersheds, is used to estimate the flow rate of water in an ungauged watershed. The changes in water storage of the sand-dammed reservoir and in downstream flow rates are estimated for two types of sand dam (natural and dredged). The results show that sand dams are capable of increasing the downstream flow rate during normal conditions and of mitigating water supply problems caused by the withdrawal of water during drought periods.

지속적 가뭄 발생에 따라 물공급의 사각지대인 유역 상류부 가뭄 대책 마련에 대한 수요가 급증하는 추세이며, 하천 및 상수도와 연계된 시스템 구축이 필요한 시점이다. 또한 하천의 건천화 방지와 적정 하천 유지유량 확보를 위한 시설 설치가 필요하나, 하천의 환경 및 생태계 보전 등의 이유로 지상 댐의 건설이 어려운 실정이다. 본 연구에서는 이에 대한 대안으로 아프리카 건조지역에서 많이 활용되는 샌드댐의 효과를 살펴보기 위한 타당성 평가를 수행하였다. 미계측 유역의 계곡수 유출량을 산정하기 위해 한국형 유역수문모형 SWAT-K를 이용하였으며, 모의 유출량을 저수지 추적기법과 연계하여 샌드댐의 저류량을 평가하였다. 기존하상을 이용하는 샌드댐과 준설형 샌드댐의 2가지 경우에 대해 취수시 저류량 변화와 하류 유량의 증감을 분석한 결과 샌드댐은 평시 하류 유량을 증대시키는 효과와 가뭄시의 취수를 통한 물공급 대응이 가능한 시설이라는 것을 정량적으로 확인할 수 있었다.

Keywords

JJGHBG_2018_v28n4_541_f0001.png 이미지

Fig. 1. Structure of the sand dams (source: Churchwilnerotary.org).

JJGHBG_2018_v28n4_541_f0002.png 이미지

Fig. 2. Test watershed.

JJGHBG_2018_v28n4_541_f0003.png 이미지

Fig. 3. Test bed of the sand dams.

JJGHBG_2018_v28n4_541_f0004.png 이미지

Fig. 4. Digital elevation model of the watershed.

JJGHBG_2018_v28n4_541_f0005.png 이미지

Fig. 5. Soil map of the watershed.

JJGHBG_2018_v28n4_541_f0006.png 이미지

Fig. 6. Land use of the watershed.

JJGHBG_2018_v28n4_541_f0007.png 이미지

Fig. 7. Locations for the observed flows.

JJGHBG_2018_v28n4_541_f0008.png 이미지

Fig. 8. Flow measurement of the test watershed.

JJGHBG_2018_v28n4_541_f0009.png 이미지

Fig. 9. Simulated and observed flows at the outlet of the watershed.

JJGHBG_2018_v28n4_541_f0010.png 이미지

Fig. 10. Schematic diagram of the sand dam water budget (Case 1).

JJGHBG_2018_v28n4_541_f0011.png 이미지

Fig. 11. Schematic diagram of the sand dam water budget (Case 2).

JJGHBG_2018_v28n4_541_f0012.png 이미지

Fig. 12. Results of reservoir routing (Case 1, without withdrawal).

JJGHBG_2018_v28n4_541_f0013.png 이미지

Fig. 13. Results of reservoir routing (Case 1, 20 m3/d withdrawal).

JJGHBG_2018_v28n4_541_f0014.png 이미지

Fig. 14. Results of reservoir routing (Case 2, without withdrawal).

JJGHBG_2018_v28n4_541_f0015.png 이미지

Fig. 15. Results of reservoir routing (Case 2, 50 m3/d withdrawal).

Table 1. Locations and data periods of the weather stations

JJGHBG_2018_v28n4_541_t0001.png 이미지

Table 2. Monthly weather data for Chuncheon station

JJGHBG_2018_v28n4_541_t0002.png 이미지

Table 3. Monthly weather data for Gapyong-bukmyeon station

JJGHBG_2018_v28n4_541_t0003.png 이미지

Table 4. Design conditions for the sand dams

JJGHBG_2018_v28n4_541_t0004.png 이미지

References

  1. Arnold, J. G., and Fohrer, N., 2005, SWAT2000: Current capabilities and research opportunities in applied watershed modeling, Hydrological Processes. 19(3), 563-572. https://doi.org/10.1002/hyp.5611
  2. Hanson, G., Nilsson, A. Ground-Water Dams for Rural-Water Supplies in Developing Countries. Ground Water 1986, 24, 497-506, doi:10.1111/j.1745-6584.1986.tb01029.x.
  3. Kim, H. S., Kim, H. S., Jeon, G. I., Kang, S. W., 2016, Evaluation of drought (2014-2015), Magazine of Korean Water Resources Association. 49(6), 61-75 (in Korean). https://doi.org/10.3741/JKWRA.2016.49.1.61
  4. Kim, J.-T., Kim, G.-B., Chung, I.-M., and Jeong, G.-C., 2014, Analysis of flow duration and estimation of increased groundwater quantity due to groundwater dam construction, The Journal of Engineering Geology, 24(1), 91-99 (in Korean with English abstract). https://doi.org/10.9720/kseg.2014.1.91
  5. Kim, J.-T., Kim, M.-I., Chung, I.-M., Kim, N.-W., and Jeong, G.-C., 2009, An analysis of groundwater level fluctuation caused by construction of groundwater dam, The Journal of Engineering Geology, 19(2), 227-233 (in Korean with English abstract).
  6. Kim, N. W., Chung, I. M., Kim, C., Lee, J., Lee., J. E., 2009, Development and applications of SWAT-K(Korea). In: Soil and Water Assessment Tool (SWAT) Global Applications (Eds. J. Arnold et al.), Special Publication No. 4, World Association of Soil and Water Conservation, Bangkok, Thailand.
  7. Kim, N. W., Chung, I. M., Lee, J., and Won, Y. S., 2007, Analysis of hydrological processes for Musim river basin by using integrated surface water and groundwater model, Journal of Korea Water Resources Association, 40(5), 419-430 (in Korean with English abstract). https://doi.org/10.3741/JKWRA.2007.40.5.419
  8. Kim, N. W., Chung, I. M., Won, Y. S., and Arnold, J. G., 2008, Development and application of the integrated SWAT-MODFLOW model, Journal of Hydrology, Vol. 356, pp. 1-16. https://doi.org/10.1016/j.jhydrol.2008.02.024
  9. Kim, N.-W., Chung, I.-M., Yoo, S., Lee, J., and Yang, S.-K., 2009, Integrated surface-groundwater analysis in Jeju Island, Journal of the Environmental Sciences, 8(9), 1017-1026 (in Korean with English abstract).
  10. Ministry of Land, Transport and Maritime Affairs, 2011, Long-term comprehensive plan for water resources (in Korean).
  11. Won, K. J. and Chung, E. S. (2016). Drought analysis of Cheongmicheon watershed using meteorological, agricultural and hydrological drought indices, J. of Korean Water Resources Association. 49(6), 509-518 (in Korean with English abstract). https://doi.org/10.3741/JKWRA.2016.49.6.509
  12. http://churchwilnerotary.org