DOI QR코드

DOI QR Code

Crystal Structure and Biochemical Characterization of Xylose Isomerase from Piromyces sp. E2

  • Son, Hyeoncheol Francis (School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University) ;
  • Lee, Sun-Mi (Clean Energy Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Kyung-Jin (School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University)
  • Received : 2017.11.15
  • Accepted : 2018.01.18
  • Published : 2018.04.28

Abstract

Biofuel production using lignocellulosic biomass is gaining attention because it can be substituted for fossil fuels without competing with edible resources. However, because Saccharomyces cerevisiae does not have a ${\text\tiny{D}}$-xylose metabolic pathway, oxidoreductase or isomerase pathways must be introduced to utilize ${\text\tiny{D}}$-xylose from lignocellulosic biomass in S. cerevisiae. To elucidate the biochemical properties of xylose isomerase (XI) from Piromyces sp. E2 (PsXI), we determine its crystal structure in complex with substrate mimic glycerol. An amino-acid sequence comparison with other reported XIs and relative activity measurements using five kinds of divalent metal ions confirmed that PsXI belongs to class II XIs. Moreover kinetic analysis of PsXI was also performed using $Mn^{2+}$, the preferred divalent metal ion for PsXI. In addition, the substrate-binding mode of PsXI could be predicted with the substrate mimic glycerol bound to the active site. These studies may provide structural information to enhance ${\text\tiny{D}}$-xylose utilization for biofuel production.

Keywords

References

  1. Sims RE, Mabee W, Saddler JN, Taylor M. 2010. An overview of second generation biofuel technologies. Bioresour. Technol. 101: 1570-1580. https://doi.org/10.1016/j.biortech.2009.11.046
  2. Jonsson LJ, Alriksson B, Nilvebrant NO. 2013. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol. Biofuels 6: 16. https://doi.org/10.1186/1754-6834-6-16
  3. Metzger JO, Huttermann A. 2009. Sustainable global energy supply based on lignocellulosic biomass from afforestation of degraded areas. Naturwissenschaften 96: 279-288. https://doi.org/10.1007/s00114-008-0479-4
  4. Lee SM, Jellison T, Alper HS. 2014. Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnol. Biofuels 7: 122.
  5. Van Vleet JH, Jeffries TW. 2009. Yeast metabolic engineering for hemicellulosic ethanol production. Curr. Opin. Biotechnol. 20: 300-306. https://doi.org/10.1016/j.copbio.2009.06.001
  6. Hahn-Hagerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF. 2007. Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol. 108: 147-77.
  7. Jin YS, Alper H, Yang YT, Stephanopoulos G. 2005. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl. Environ. Microbiol. 71: 8249-8256. https://doi.org/10.1128/AEM.71.12.8249-8256.2005
  8. Garcia Sanchez R, Karhumaa K, Fonseca C, Sanchez Nogue V, Almeida JR, Larsson CU, et al. 2010. Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol. Biofuels 3: 13. https://doi.org/10.1186/1754-6834-3-13
  9. Bera AK, Ho NW, Khan A, Sedlak M. 2011. A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation. J. Ind. Microbiol. Biotechnol. 38: 617-626. https://doi.org/10.1007/s10295-010-0806-6
  10. Kim SR, Park YC, Jin YS, Seo JH. 2013. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol. Adv. 31: 851-861. https://doi.org/10.1016/j.biotechadv.2013.03.004
  11. Nogue VS, Karhumaa K. 2015. Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals. Biotechnol. Lett. 37: 761-772. https://doi.org/10.1007/s10529-014-1756-2
  12. Young E, Lee SM, Alper H. 2010. Optimizing pentose utilization in yeast: the need for novel tools and approaches. Biotechnol. Biofuels 3: 24. https://doi.org/10.1186/1754-6834-3-24
  13. Matsushika A, Inoue H, Kodaki T, Sawayama S. 2009. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl. Microbiol. Biotechnol. 84: 37-53. https://doi.org/10.1007/s00253-009-2101-x
  14. Bikard D, Julie-Galau S, Cambray G, Mazel D. 2010. The synthetic integron: an in vivo genetic shuffling device. Nucleic Acids Res. 38: e153. https://doi.org/10.1093/nar/gkq511
  15. Karhumaa K, Garcia Sanchez R, Hahn-Hagerdal B, Gorwa-Grauslund MF. 2007. Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb. Cell Fact. 6: 5. https://doi.org/10.1186/1475-2859-6-5
  16. Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A, et al. 2009. Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl. Microbiol. Biotechnol. 82: 1067-1078. https://doi.org/10.1007/s00253-008-1794-6
  17. Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MS, de Laat WT, et al. 2003. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res. 4: 69-78. https://doi.org/10.1016/S1567-1356(03)00141-7
  18. Brat D, Boles E, Wiedemann B. 2009. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 75: 2304-2311. https://doi.org/10.1128/AEM.02522-08
  19. Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT. 2005. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 5: 925-934. https://doi.org/10.1016/j.femsyr.2005.04.004
  20. Lee SM, Jellison T, Alper HS. 2012. Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae. Appl. Environ. Microbiol. 78: 5708-5716. https://doi.org/10.1128/AEM.01419-12
  21. van Bastelaere P, Vangrysperre W, Kersters-Hilderson H. 1991. Kinetic studies of Mg(2+)-, Co(2+)- and Mn(2+)-activated D-xylose isomerases. Biochem. J. 278: 285-292. https://doi.org/10.1042/bj2780285
  22. Han B-G, Bong SM, Cho J-W, Kim M-D, Kim SJ, Lee BI. 2015. Crystal structure of a class 2 $\small{D}$-xylose isomerase from the human intestinal tract microbe Bacteroides thetaiotaomicron. Biodesign 3: 41-47.
  23. Lee M, Rozeboom HJ, de Waal PP, de Jong RM, Dudek HM, Janssen DB. 2017. Metal dependence of the xylose isomerase from Piromyces sp. E2 explored by activity profiling and protein crystallography. Biochemistry 56: 5991-6005. https://doi.org/10.1021/acs.biochem.7b00777
  24. Park S-Y, Ha S-C, Kim Y-G. 2017. The protein crystallography beamlines at the pohang light source II. Biodesign 5: 30-34.
  25. Otwinowski Z, Minor W. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276: 307-326.
  26. Matthews BW. 1968. Solvent content of protein crystals. J. Mol. Biol. 33: 491-497. https://doi.org/10.1016/0022-2836(68)90205-2
  27. Vagin A, Teplyakov A. 2010. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66: 22-25.
  28. Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60: 2126-2132. https://doi.org/10.1107/S0907444904019158
  29. Murshudov GN, Vagin AA, Dodson EJ. 1997. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53: 240-255. https://doi.org/10.1107/S0907444996012255
  30. Krissinel E, Henrick K. 2007. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372: 774-797. https://doi.org/10.1016/j.jmb.2007.05.022

Cited by

  1. Crystal Structure and Functional Characterization of a Xylose Isomerase (PbXI) from the Psychrophilic Soil Microorganism, Paenibacillus sp. vol.29, pp.2, 2018, https://doi.org/10.4014/jmb.1810.10057
  2. An extra copy of the β-glucosidase gene improved the cellobiose fermentation capability of an engineered Saccharomyces cerevisiae strain vol.9, pp.10, 2019, https://doi.org/10.1007/s13205-019-1899-x
  3. Pentose degradation in archaea: Halorhabdus species degrade D-xylose, L-arabinose and D-ribose via bacterial-type pathways vol.24, pp.5, 2018, https://doi.org/10.1007/s00792-020-01192-y