DOI QR코드

DOI QR Code

Inhibition Effect of Enzymatic Hydrolysate from Japanese Mud Shrimp Upogebia major on TNF-α-induced Vascular Inflammation in Human Umbilical Vein Endothelial Cells (HUVECs)

혈관내피세포에서 TNF-α로 유도되는 혈관염증에 대한 쏙(Upogebia major) 효소가수분해물의 억제 효과

  • Kim, So-Yeon (Food Safety and Processing Research Division, National Institute of Fisheries Science) ;
  • Yang, Ji-Eun (Food Safety and Processing Research Division, National Institute of Fisheries Science) ;
  • Song, Jae-Hee (Tidal Flat Research Center, National Institute of Fisheries Science) ;
  • Maeng, Sang-Hyun (Food Safety and Processing Research Division, National Institute of Fisheries Science) ;
  • Lee, Ji-Hyun (Food Safety and Processing Research Division, National Institute of Fisheries Science) ;
  • Yoon, Na-Young (Food Safety and Processing Research Division, National Institute of Fisheries Science)
  • 김소연 (국립수산과학원 식품위생가공과) ;
  • 양지은 (국립수산과학원 식품위생가공과) ;
  • 송재희 (서해수산연구소 갯벌연구센터) ;
  • 맹상현 (국립수산과학원 식품위생가공과) ;
  • 이지현 (국립수산과학원 식품위생가공과) ;
  • 윤나영 (국립수산과학원 식품위생가공과)
  • Received : 2018.02.06
  • Accepted : 2018.03.02
  • Published : 2018.04.30

Abstract

Arteriosclerosis is the major cause of coronary artery and cerebrovascular disease, which are leading causes of death. Pro-inflammatory cytokines induce injury to vascular endothelial cells by increasing cell adhesion molecules, leading to vascular inflammation, a major risk factor for the development of arteriosclerosis. In the current study, we investigated the inhibitory effect of enzymatic hydrolysate from Japanese mud shrimp Upogebia major on the inflammation of tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$)-stimulated human umbilical vein endothelial cells (HUVECs). We first evaluated the antioxidant and angiotensin I-converting enzyme (ACE) inhibitory activities of eight U. major enzymatic hydrolysates: alcalase, papain, ${\alpha}$-chymotrypsin (${\alpha}-Chy$), trypsin, pepsin, neutrase, protamex and flavourzyme. Of these, ${\alpha}-Chy$ exhibited potent antioxidant and ACE inhibitory activities. The ${\alpha}-Chy$ hydrolysate was fractionated by two ultrafiltration membranes of 3 and 10 kDa. The ${\alpha}-Chy$ hydrolysate of U. major and its molecular weight cut-off fractions resulted in a significant reduction in NO production and a decrease in cell adhesion molecules [vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and endothelial-selectin (E-selectin)] and pro-inflammatory cytokines [interleukin-6 (IL-6), interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1)] in $TNF-{\alpha}$-stimulated HUVECs. These results suggest that enzymatic hydrolysate from U. major can be used in the control and prevention of vascular inflammation and arteriosclerosis.

Keywords

References

  1. Adler-Nissen J. 1979. Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J Agric Food Chem 27, 1256-1262. http://dx.doi. org/10.1021/jf60226a042.
  2. Adler-Nissen J. 1986. Enzymic hydrolysis of food proteins. Elsevier Applied Science Publishers. Barking, Essex, U.K., 110-169.
  3. Bae JH, Park JS, Hong GR, Shin DG, Kim YJ and Shim BS. 2008. Correlation between inflammatory markers and the progression of atherosclerosis in the patients with coronary artery and disease. Korean J Medicine 74, 51-58.
  4. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181, 1199-1200. http://dx.doi.org/10.1038/1811199a0.
  5. Cho YM, Song HS, Jang SA, Park DW, Shin YS, Jeong YJ and Kang SC. 2016. Suppression of VCAM-1 expression in human aortic smooth muscle cells treated with ethanol extracts of Cynanchum wilfordii radix, Arctium lappa L., and Dioscorea opposita. Korean J Plant Res 29, 525-531. http://dx.doi.org/10.7732/kjpr.2016.29.5.525.
  6. Hong JS. 2013. Biology of the mud shrimp Upogebia major (de Haan, 1841), with particular reference to pest management for shrimp control in manila clam bed in the West Coast of Korea. Ocean Polar Res 35, 323-349. http://dx.doi.org/10.4217/OPR.2013.35.4.323.
  7. Koo HJ, Park HJ, Byeon HE, Kwak JH, Um SH, Kwon ST, Rhee DK and Pyo SN. 2014. Chimese yam extracts containing ${\beta}$-sitosterol and ethyl linoleate protect against atherosclerosis in apolipoprotein e-deficient mice and inhibit muscular expression of VCAM-1 in vitro. J Food Sci 79, H719-H729. http://dx.doi.org/10.1111/1750-3841.12401.
  8. Korhonen R, Lahti A, Kankaanranta H and Moilanen E. 2005. Nitric oxide production and signaling in inflammation. Curr Drug Targets Inflamm Allergy 4, 471-479. http://dx.doi.org/10.2174/1568010054526359.
  9. Kunsch C and Medford RM. 1999. Oxidative stress as a regulator of gene expression in the vasculature. Circ Res 85, 753-66. http://dx.doi.org/10.1161/01.RES.85.8.753.
  10. Lee AS, Kim JS, Lee YJ and Kang DG. 2012a. Anti-TNF-${\alpha}$ activity of Portulaca oleracea in vascular endothelial cells. Int J Mol Sci 13, 5628-5644. http://dx.doi.org/10.3390/ijms1305562P.
  11. Lee SM, Lee YJ, Kim YC, Kim JS, Kang DG and Lee HS. 2012b. Vascular protective role of vitexicarpin isolated from Vitex rotundifolia in human umbilical vein endothelial cells. Inflammation 35, 584-93. http://dx.doi.org/10.1007/s10753-011-9349-x.
  12. Li GH, Liu H, Shi YH and Le GW. 2005. Direct spectrophotemetric measurement of angiotensin I-converting enzyme inhibitory activity for screening bioactive peptides. J Pharm Biomed Anal 37, 219-224. http://dx.doi.org/10.1016/j.jpba.2004.11.004.
  13. Nardin ED. 2001. The role of inflammatory and immunological mediators in periodontitis and cardiovascular disease. Ann periodontal 6, 30-40. http://dx.doi.org/10.1902/annals. 2001.6.1.30.
  14. Oh GW and Jung WK. 2015. Biomedical materials for regenerating bone tissue utilizing marine invertebrate. Korean J Fish Aquat Sci 48, 001-015. http://dx.doi.org/10.5657/KFAS.2015.0001.
  15. Oyaizu M. 1986. Studies on product of browning reaction prepared from glucoseamine. Jpn J Nutr 44, 307-315. http://dx.doi.org/10.5264/eiyogakuzashi.44.307.
  16. Packard RR and Libby P. 2008. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem 54, 24-38. http://dx.doi.org/10.1373/clinchem.2007.097360.
  17. Pan J, Kurosky A, Xu B, Chopra AK, Coppenhaver DH, Singh IP and Baron S. 2000. Broad antiviral activity in tissues of crustaceans. Antiviral Res 48, 39-47. http://dx.doi.org/10.1016/S0166-3542(00)00117-0.
  18. Parish RC and Miller LJ. 1992. Adverse effects of angiotensin converting enzyme (ACE) inhibitors. Drug Saf 7, 14-31. http://dx.doi.org/0114-5916/92/0001-0014/$09.00/0. https://doi.org/10.2165/00002018-199207010-00004
  19. Paul M, Mehr AP and Kreutz R. 2006. Physiology of local rennin- angiotensin systems. Physiol Rev 86, 747-803. http://dx.doi.org/10.1152/physrev.00036.2005.
  20. Peter K, Nawroth P, Conradt C, Nordt T, Weiss T, Boehme M, Wunsch A, Allenberg J, Kubler W and Bode C. 1997. Circulating vascular cell adhesion molecule-1 correlates with the extent of human atherosclerosis in contrast to circulating intracellular adhesion molecule-1, E-selectin, P-selectin, and thrombomodulin. Arterioscler Thromb Vasc Biol 17,505-512. http://dx.doi.org/10.1161/01.ATV.17.3.505.
  21. Roberta R, Nicoletta P, Anna P, Ananth P, Min Y and Catherine RE. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26, 1231-1237. http://dx.doi.org/10.1016/S0891-5849(98)00315-3.
  22. Rosa RD and Barracco MA. 2010. Antimicrobial peptides in crustaceans. Invertebrate Surviv J 7, 262-284.
  23. Sindhu S and Sherief PM. 2011. Extraction, characterization, antioxidant and anti-inflammatory properties of carotenoids from the shell waste of Arabian red shrimp Aristeus alcocki, Ramadan 1938. Open Conf Proc J 2, 95-103. http://dx.doi.org/10.2174/2210289201102010095.
  24. Sprague AH and Khalil RA. 2009. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 78, 539-552. http://dx.doi.org/0.1016/j.bcp.2009.04.029. https://doi.org/10.1016/j.bcp.2009.04.029
  25. Takahashi H, Yoshika M, Komiyama Y and Nishimura M. 2011. The central mechanism underlying hypertension: a review of the roles of sodium ions, epithelial sodium channels, the rennin-angiotensin-aldosterone system, oxidative stress and endogenous digitalis in the brain. Hypertens Res 34,1147-60. http://dx.doi.org/10.1038/hr.2011.105.
  26. Yang YH, Lai HJ, Huang CM, Wang LC, Lin YT and Chiang BL. 2004. Sera from children with active Henoch-Schonlein purpura can enhance the production of interleukin 8 by human umbilical venous endothelial cells. Ann Rheum Dis 63, 1511-1513. http://dx.doi.org/10.1136/ard.2003.016196.