DOI QR코드

DOI QR Code

Comparative Performance Analysis of Ammonia-Water Rankine Cycle and Kalina Cycle for Recovery of Low-Temperature Heat Source

저온 열원 발전을 위한 암모니아-물 랭킨 사이클과 칼리나 사이클의 성능특성의 비교 해석

  • KIM, KYOUNGHOON (Department of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • BAE, YOOGEUN (Graduate School, Kumoh National Institute of Technology) ;
  • JUNG, YOUNGGUAN (Department of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • KIM, SEWOONG (Department of Mechanical Engineering, Kumoh National Institute of Technology)
  • 김경훈 (금오공과대학교 기계공학과) ;
  • 배유근 (금오공과대학교 대학원) ;
  • 정영관 (금오공과대학교 기계공학과) ;
  • 김세웅 (금오공과대학교 기계공학과)
  • Received : 2018.03.20
  • Accepted : 2018.04.30
  • Published : 2018.04.30

Abstract

This paper presents a comparative analysis of thermodynamic performance of ammonia-water Rankine cycles with and without regeneration and Kalina cycle for recovery of low-temperature heat source. Special attention is paid to the effect of system parameters such as ammonia mass fraction and turbine inlet pressure on the characteristics of the system. Results show that maximum net power can be obtained in the regenerative Rankine cycle for high turbine inlet pressures. However, Kalina cycle shows better net power and thermal efficiency for low turbine inlet pressures, and the optimum ammonia mass fractions of Kalina cycle are lower than Rankine cycles.

Keywords

References

  1. S. H. J. Bao and L. Zhao, "A review of working fluid and expander selections for organic Rankine cycle", Renew. Sustain. Energy Rev., Vol. 24, 2013, pp. 325-342. https://doi.org/10.1016/j.rser.2013.03.040
  2. V. A. Prisyazhniuk, "Alternative trends in development of thermal power plant", Applied Therm. Eng., Vol. 28, 2008, pp. 190-194. https://doi.org/10.1016/j.applthermaleng.2007.03.025
  3. K. H. Kim, H. J. Ko, and S. W. Kim, "Performance Analysis of Kalina Cycle using Ammonia-Water Mixture as Working Fluid for Use of Low-Temperature Energy Source", Trans. Korean Hydrogen and New Energy Society, Vol. 22, 2011, pp. 109-117.
  4. C. Yu and K. T. Chau, "Thermoelectric automotive waste heat energy recovery using maximum power point tracking", Energy Convers Manage, Vol. 50, 2009, pp. 1506-1512. https://doi.org/10.1016/j.enconman.2009.02.015
  5. P. Roy, M. Desilets, N. Galanis, H. Nesreddine, and E. Cayer, "Thermodynamic analysis of a power cycle using a low-temperature source and a binary NH3 -H2O mixture as working fluid", Int. J. Thermal Sci., Vol. 49, 2010, pp. 48-58. https://doi.org/10.1016/j.ijthermalsci.2009.05.014
  6. K. H. Kim and C. H. Han, "Performance Analysis of Ammonia-Water Regenerative Rankine Cycles for Use of Low-Temperature Energy Source", J. Korean Solar Energy Soc., Vol. 31, 2011, pp. 15-22. https://doi.org/10.7836/kses.2011.31.1.015
  7. R. Shankar and T. Srinivas, "Performance investigation of Kalina cooling cogeneration cycles", Int. J. Refrigeration, Vol. 86, 2018, pp. 163-185. https://doi.org/10.1016/j.ijrefrig.2017.11.019
  8. S. Zhang, Y. Chen, J. Wu, and Z. Zhu, "Thermodynamic analysis on a modified Kalina cycle with parallel cogeneration of power and refrigeration", Energy Conv. Management, Vol. 163, 2018, pp. 1-127. https://doi.org/10.1016/j.enconman.2018.02.035
  9. K. H. Kim, C. H. Han, K. Kim, "Effects of Ammonia Concentration on the Thermodynamic Performances of Ammonia-Water Based Power Cycles", Thermochimica Acta, Vol. 530, 2012, pp. 7-16. https://doi.org/10.1016/j.tca.2011.11.028
  10. K. H. Kim, C. H. Han, and K. Kim, "Comparative exergy analysis of ammonia-water based Rankine cycles with and without regeneration", Int. J. Exergy, Vol. 12, 2013, pp. 344-361. https://doi.org/10.1504/IJEX.2013.054117
  11. K. H. Kim, H. J. Ko, and K. Kim, "Assessment of pinch point characteristics in heat exchangers and condensers of am- monia-water based power cycles", Applied Energy, vol. 113, 2014, pp. 970-981. https://doi.org/10.1016/j.apenergy.2013.08.055
  12. P. A. Lolos and E. D. Rogdakis, "A Kalina power cycle driven by renewable energy sources", Energy, Vol. 34, 2009, pp. 457-464. https://doi.org/10.1016/j.energy.2008.12.011
  13. S. Ogriseck, "Integration of Kalina cycle in a combined heat and power plant, a case study", Applied Ther. Eng., Vol. 29, 2009, pp. 2843-2848. https://doi.org/10.1016/j.applthermaleng.2009.02.006
  14. C. Yue, D. Han, W. Pu, and W. He, "Comparative analysis of a bottoming transcritical ORC and a Kalina cycle for engine exhaust heat recovery", Energy Convers Manage., Vol. 89, 2015, pp. 764-774. https://doi.org/10.1016/j.enconman.2014.10.029
  15. F. Xu and D. Y. Goswami, "Thermodynamic properties of ammonia-water mixtures for power cycle application", Energy, Vol. 24, 1999, pp. 525-536. https://doi.org/10.1016/S0360-5442(99)00007-9