DOI QR코드

DOI QR Code

Evaluation of Stated Models for the Floating and Sinking Phenomena in the Chemical Domain

화학영역에서 뜨고 가라앉는 현상에 대해 진술된 모델의 평가

  • Received : 2018.02.11
  • Accepted : 2018.04.04
  • Published : 2018.06.20

Abstract

In this study, the models described in the textbooks related to floating and sinking phenomena in the chemical domain were evaluated based on the aspect of nature related to the generation of models. To achieve this, we were targeting statement of textbooks from 7th curriculum to 2009 revised curriculum. Analysis of textbooks was performed for science of elementary school (total 2 textbooks) and science of middle school (total 21 textbooks) which dealt with these phenomena. According to the textbooks analysis, characteristics of statement way were (1) No description of the model's prerequisites, (2) Statement based matter viewpoint, (3) Lack of pattern principle, (4) Inadequacy of the case covered. Although the education about the model for the students should be preceded by the education related to the process of model creation rather than the activity using the model, the education about the nature of the model is insufficient. In order to solve this problem, we propose the model statement in textbooks and the development of the model evaluation tool related to model creation.

본 연구는 화학영역에서 뜨고 가라앉는 현상과 관련되어 교과서에 진술된 모델을 모델의 생성과 관련된 본성 측면을 기반으로 평가하였다. 이를 알아보기 위해 7차 교육과정에서부터 2009 개정 교육과정의 초등학교 3학년 과학교과서 2종과 중학교 과학교과서 21종이 분석되어졌다. 분석 결과 진술된 모델은 (1) 모델의 전제조건에 대한 설명 부재, (2) 물질적 관점의 질술 방식, (3) 패턴의 원리 결여, (4) 다루어진 사례의 부적절성의 특성을 보였다. 학생들에 대한 모델의 교육은 모델을 이용한 활동 보다는 모델이 생성되는 과정과 관계된 교육이 선행되어야 함에도 그러한 모델의 본성에 대한 교육이 부족함을 알 수 있었다. 이를 해결하기 위해 모델의 생성과 관련된 모델의 진술과 이와 관련된 학생 모델 평가 도구 제작을 제언하였다.

Keywords

References

  1. Duschl, R. A.; Schweingruber, H. A.; Shouse, A. W. Taking Science to School. Learning and Teaching Science in Grades K-8; National Academies Press: Washington, DC, 2007.
  2. Morgan, M. S.; Morrison, M. Models as Mediators: Perspectives on Natural and Social Science (Vol. 52); Cambridge University Press: Cambridge, 1999.
  3. Schwarz, C. V. Sci. Educ. 2009, 93, 191.
  4. Cho, H. S.; Nam, J. H.; Oh, P. S. J. Kor. Ass. Sci. Educ. 2017, 37, 239.
  5. Chamizo, J. A. Sci. Educ. 2013, 22, 1613. https://doi.org/10.1007/s11191-011-9407-7
  6. Kim, M. Y.; Kim, H. K. J. Kor. Ass. Sci. Educ. 2007, 27, 379.
  7. Oh, P. S. Kor. Ass. Sci. Educ. 2007, 27, 645.
  8. Oh, P. S.; Oh, S. J. Kor. Ass. Sci. Educ. 2011, 31, 128.
  9. Cha, J. H.; Kim, Y. H.; Noh, T. H. J. Korean Chem. Soc. 2004, 48, 638. https://doi.org/10.5012/jkcs.2004.48.6.638
  10. Ha, J. H.; Lee, H. J.; Kang, S. J. J. Gifted/Talented Educ. 2009, 19, 187.
  11. Gilbert, J. K. Visualization: An Emergent Field of Practice and Enquiry in Science Education. In Visualization: Theory and Practice in Science Education, Springer: 2008, pp. 3-24.
  12. Gilbert, J. K.; Boulter, C. J.; Rutherford, M. Int. J. Sci. Educ. 1998, 20, 83. https://doi.org/10.1080/0950069980200106
  13. Treagust, D. F.; Chittelborough, G. D.; Mamiala, T. L. Int. J. Sci. Educ. 2002, 24, 357. https://doi.org/10.1080/09500690110066485
  14. Magnani, L.; Casadio, C. Model-based Reasoning in Science and Technology; Springer: 2016.
  15. Ruppert, J.; Duncan, R. G.; Chinn, C. A. Res. Sci. Educ, 2017, 1.
  16. Zangori, L.; Peel, A.; Kinslow, A.; Friedrichsen, P.; Sadler, T. D. J. Res. Sci. Teach. 2017, 54, 1249. https://doi.org/10.1002/tea.21404
  17. Kousathana, M.; Demerouti, M.; Tsaparlis, G. Sci. Educ. 2005, 14, 173. https://doi.org/10.1007/s11191-005-5719-9
  18. Kim, K. S.; Choi, E. K.; Cha, J. H.; Noh, T. H. J. Korean Chem. Soc. 2006, 50, 338. https://doi.org/10.5012/jkcs.2006.50.4.338
  19. Paik, S. H. J. Chem. Educ. 2015, 92, 1484. https://doi.org/10.1021/ed500891w
  20. Kim, S. K.; Park, C. Y.; Choi, H.; Paik, S. H. J. Korean Chem. Soc. 2017, 61, 65. https://doi.org/10.5012/jkcs.2017.61.2.65
  21. Gillespie, R. J. J. Chem. Educ. 2004, 81, 298. https://doi.org/10.1021/ed081p298
  22. Kim. S. K.; Kim. S. W.; Paik. S. H. J. Korean Chem. Soc. 2017, 61, 112.
  23. Paik, S. H.; Song, G. R.; Kim, S. K.; Ha, M. S. Eurasia J. Math., Sci. Tech. Ed. 2017, 13, 4965. https://doi.org/10.12973/eurasia.2017.00976a
  24. Gobert, J. D.; Buckley, B. C. Int. J. Sci. Educ. 2000, 22, 891. https://doi.org/10.1080/095006900416839
  25. Rouse, W. B.; Morris, N. M. Psychol. Bull. 1986, 100, 349. https://doi.org/10.1037/0033-2909.100.3.349
  26. Portides, D. P. Sci. Educ. 2007, 16, 699. https://doi.org/10.1007/s11191-006-9001-6
  27. Windschitl, M.; Thompson, J.; Braaten, M. Sci. Educ. 2008, 92, 941. https://doi.org/10.1002/sce.20259
  28. Glynn, S. M.; Duit, R. Learning Science Meaningfully: Constructing Conceptual Models. In Learning Science in the Schools: Research Reforming Practice. Glynn, S. M., Dui, R.; L. Erlbaum Associates: 1995, pp. 3-33.
  29. Piburn, M. D.; Reynolds, S. J.; Leedy, D. E.; McAuliffe, C. M.; Birk, J. P.; Johnson, J. K. The hidden earth: visualization of geologic features and their subsurface geometry. Paper presented at the annual meeting of National Association for Research in Science Teaching, New Orleans, 2002.
  30. Hestenes, D. Am. J. Phys. 1987, 55, 440. https://doi.org/10.1119/1.15129
  31. Mislevy, R. J.; Haertel, G.; Riconscente, M.; Rutstein, D. W.; Ziker, C. Evidence-centered Assessment Design. In Assessing Model-Based Reasoning using Evidence-Centered Design; Springer: 2017, pp. 19-24.
  32. Nisbett, R. E.; Wilson, T. D. Psychol. Rev. 1977, 84, 231. https://doi.org/10.1037/0033-295X.84.3.231
  33. Lehrer, R.; Schauble, L. J. Appl. Dev. Psychol. 2000, 21, 39. https://doi.org/10.1016/S0193-3973(99)00049-0
  34. Sins, P. H.; Savelsbergh, E. R.; van Joolingen, W. R. Int. J. Sci. Educ. 2005, 27, 1695. https://doi.org/10.1080/09500690500206408
  35. Zhang, B.; Wong, L. H.; Chew, L. C.; Jacobson, M. J.; Looi, C. Using computer-based modelling for primary science learning and assessment. Paper presented at the 32nd Annual Conference of the International Association of Educational Assessment (IAEA) on "Assessment in an Era of Rapid Change: Innovations and Best Practices", Singapore, 21-26 May, 2006.
  36. Chi, M. T.; Slotta, J. D.; De Leeuw, N. Learn Instr. 1994, 4, 27. https://doi.org/10.1016/0959-4752(94)90017-5
  37. Ministry of Education. Elementary science 3-1; Mirea-N: Seoul, 2014.
  38. Lee, J. S.; Kim. S. H.; Kim. H. R.; Kim. H. S.; Park, K. T.; Park, M. S.; Park, S. Y.; Park, Y. O.; Bea, M. J.; Song, S. J.; Lee. S. Y.; Lim, H.; Jung D. H.; Hong, J. E. Middle School Science 2; Doosan: Seoul, 2013.
  39. Park, H. S.; Kim J. M.; Jeong D. Y.; Sin, H. S.; Jeong J. S.; Huh, S. I.; Hong, D. P.; Kim, C. B.; Lim, Y. J.; Lee, H. W.; Yoon, S. J.; Lee, E. H.; Jun, S. Y.; Choi, B. S.; Kim, M. J.; Oh, S. H. Middle School Science 3; Gyohagsa: Seoul, 2012.
  40. Kim, S. J.; Kim, T. I.; Ahn, H. S. Choi, M. H.; Kim, H. S.; Kim, H. K.; Oh, H. S.; Bea, M. J.; Lee, J. A.; Lee, J. W.; Ryu, H. K.; Choi, K. S. Middle School Science 3; Mirea-N: Seoul, 2012.

Cited by

  1. Using a Systems Thinking Approach and a Scratch Computer Program To Improve Students’ Understanding of the Brønsted-Lowry Acid-Base Model vol.96, pp.12, 2018, https://doi.org/10.1021/acs.jchemed.9b00210
  2. 2009·2015 개정 교육과정 화학 I 및 화학 II 교과서 및 교사용 지도서에 제시된 산·염기 모델 내용에 대한 '이그노런스' 분석 vol.64, pp.3, 2018, https://doi.org/10.5012/jkcs.2020.64.3.175