DOI QR코드

DOI QR Code

An improved solid boundary treatment for wave-float interactions using ISPH method

  • Zheng, Xing (College of Shipbuilding Engineering, Harbin Engineering University) ;
  • Lv, Xipeng (College of Shipbuilding Engineering, Harbin Engineering University) ;
  • Ma, Qingwei (School of Mathematics, Computer Science and Engineering, City, University of London) ;
  • Duan, Wenyang (College of Shipbuilding Engineering, Harbin Engineering University) ;
  • Khayyer, Abbas (Department of Civil and Earth Resources Engineering, Kyoto University) ;
  • Shao, Songdong (Department of Civil and Structural Engineering, University of Sheffield)
  • Received : 2017.03.17
  • Accepted : 2017.08.01
  • Published : 2018.05.31

Abstract

The Smoothed Particle Hydrodynamics (SPH) method has proved to have great potentials in dealing with the wave-structure interactions. Compared with the Weakly Compressible SPH (WCSPH) method, the ISPH approach solves the pressure by using the pressure Poisson equation rather than the equation of state. This could provide a more stable and accurate pressure field that is important in the study of wave-structure interactions. This paper improves the solid boundary treatment of ISPH by using a high accuracy Simplified Finite Difference Interpolation (SFDI) scheme for the 2D wave-structure coupling problems, especially for free-moving structure. The proposed method is referred as the ISPH_BS. The model improvement is demonstrated by the documented benchmark tests and laboratory experiment covering various wave-structure interaction applications.

Keywords

References

  1. Adami, S., Hu, X.Y., Adams, N.A., 2012. A generalized wall boundary con- dition for smoothed particle hydrodynamics. J. Comput. Phys. 231 (21), 7057-7075. https://doi.org/10.1016/j.jcp.2012.05.005
  2. Aly, A.M., Minh, T.N., Lee, S.W., 2015. Numerical analysis of liquid sloshing using the incompressible Smoothed Particle Hydrodynamics method. Adv. Mech. Eng. 7 (2), 765741. https://doi.org/10.1155/2014/765741
  3. Asai, M., Aly, A., Sonoda, Y., Sakai, Y., 2012. A stabilized incompressible SPH method by relaxing the density invariance condition. J. Appl. Math. 11, 2607-2645.
  4. Bonet, J., Lok, T.S.L., 1999. Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Comput. Methods Appl. Mech. Eng. 180 (1-2), 97-115. https://doi.org/10.1016/S0045-7825(99)00051-1
  5. Bouscasse, B., Colagrossi, A., Marrone, S., Antuono, M., 2013. Nonlinear water wave interaction with floating bodies in SPH. J. Fluids Struct. 42, 112-129. https://doi.org/10.1016/j.jfluidstructs.2013.05.010
  6. Canelas, R.B., Dominguez, J.M., Crespo, A.J.C., Gomez-Gesteira, M., Ferreira, R.M.L., 2015. A smooth particle hydrodynamics discretization for the modelling of free surface flows and rigid body dynamics. Int. J. Numer. Methods Fluids 78 (9), 581-593. https://doi.org/10.1002/fld.4031
  7. Dilts, G., 1999. Moving-least-squares-particle-hydrodynamics-I: consistency and stability. Int. J. Numer. Methods Eng. 44 (8), 1115-1155. https://doi.org/10.1002/(SICI)1097-0207(19990320)44:8<1115::AID-NME547>3.0.CO;2-L
  8. Faltinsen, O.M., 1977. Numerical solutions of transient nonlinear free-surface motion outside or inside moving bodies. In: Proceedings of the Second International Conference on Numerical Ship Hydrodynamics. University of California, Berkeley, pp. 347-357.
  9. Gomez-Gesteira, M., Rogers, B.D., Crespo, A.J.C., Dalrymple, R.A., Narayanaswamy, M., Dominguez, J.M., 2012. SPHysics - development of a free-surface fluid solver - Part 1: theory and formulations. Comput. Geosci. 48, 289-299. https://doi.org/10.1016/j.cageo.2012.02.029
  10. Gotoh, H., Khayyer, A., Ikari, H., Arikawa, T., Shimosako, K., 2014. On enhancement of Incompressible SPH method for simulation of violent sloshing flows. Appl. Ocean Res. 46, 104-115. https://doi.org/10.1016/j.apor.2014.02.005
  11. Gotoh, H., Khayyer, A., 2016. Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering. J. Ocean Eng. Mar. Energy 2 (3), 251-278. https://doi.org/10.1007/s40722-016-0049-3
  12. Gui,Q.,Dong, P., Shao, S., 2015. Numerical study of PPE source termerrors in the incompressible SPH models. Int. J. Numer. Methods Fluids 77 (6), 358-379. https://doi.org/10.1002/fld.3985
  13. Ikari, H., Gotoh, H., Khayyer, A., 2011. Numerical simulation on moored floating body in wave by improved MPS method. In: Coastal Structures 2011, vols. 1 & 2, pp. 308-317.
  14. Jun, C.W., Sohn, J.H., Lee, K.C., 2015. Dynamic analysis of a floating body in the fluid by using the smoothed particle hydrodynamics. J. Mech. Sci. Technol. 29 (7), 2607-2613. https://doi.org/10.1007/s12206-015-0505-3
  15. Koshizuka, S., Nobe, A., Oka, Y., 1998. Numerical analysis of breaking waves using the moving particle semi-implicit method. Int. J. Numer. Meth. Fluids 26, 751-769. https://doi.org/10.1002/(SICI)1097-0363(19980415)26:7<751::AID-FLD671>3.0.CO;2-C
  16. Lee, B.H., Jeong, S.M., Hwang, S.C., Park, J.C., Kim, M.H., 2013. A particle simulation of 2-D vessel motions interacting with liquid-sloshing cargo. CMES Comput. Model. Eng. Sci. 91 (1), 43-63.
  17. Leroy, A., Violeau, D., Ferrand, M., Kassiotis, C., 2014. Unified semi-analytical wall boundary conditions applied to 2-D incompressible SPH. J. Comput. Phys. 261, 106-129. https://doi.org/10.1016/j.jcp.2013.12.035
  18. Lin, P.Z., Liu, P.L.F., 1998. A numerical study of breaking waves in the surf zone. J. Fluid Mech. 359, 239-264. https://doi.org/10.1017/S002211209700846X
  19. Liu, M.B., Liu, G.R., 2006. Restoring particle consistency in smoothed particle hydrodynamics. Appl. Numer. Math. 56, 19-36. https://doi.org/10.1016/j.apnum.2005.02.012
  20. Liu, W.K., Jun, S., Zhang, Y.F., 1995. Reproducing kernel particle methods. Int. J. Numer. Methods Fluids 20, 1081-1106. https://doi.org/10.1002/fld.1650200824
  21. Liu, X., Lin, P.Z., Shao, S.D., 2014. An ISPH simulation of coupled structure interaction with free surface flows. J. Fluids Struct. 48, 46-61. https://doi.org/10.1016/j.jfluidstructs.2014.02.002
  22. Ma, Q.W., 2008. A new meshless interpolation scheme for MLPG_R method. CMES-Comput. Model. Eng. Sci. 23 (2), 75-89.
  23. Macia, F., Antuono, M., Gonzlez, L.M., Colagrossi, A., 2011. Theoretical analysis of the no-slip boundary condition enforcement in SPH methods. Prog. Theor. Phys. 125, 1091-1121. https://doi.org/10.1143/PTP.125.1091
  24. Marrone, S., Antuono, M., Colagrossi, A., Colicchio, G., Le Touze, D., Graziani, G., 2011. delta-SPH model for simulating violent impact flows. Comput. Methods Appl. Mech. Eng. 200 (13-16), 1526-1542. https://doi.org/10.1016/j.cma.2010.12.016
  25. Marrone, S., Colagrossi, A., Antuono, M., Colicchio, G., Graziani, G., 2013. An accurate SPH modeling of viscous flows around bodies at low and moderate Reynolds numbers. J. Comput. Phys. 245, 456-475. https://doi.org/10.1016/j.jcp.2013.03.011
  26. Mei, C.C., Black, J.L., 1969. Scattering of surface waves by rectangular ob- stacles in waters of finite depth. J. Fluid Mech. 38, 499-511. https://doi.org/10.1017/S0022112069000309
  27. Monaghan, J.J., Kos, A., Issa, N., 2003. Fluid motion generated by impact. J. Water Port Coast Ocean Eng. 129, 250-259. https://doi.org/10.1061/(ASCE)0733-950X(2003)129:6(250)
  28. Najafi-Jilani, A., Rezaie-Mazyak, A., 2011. Numerical investigation of floating breakwater movement using SPH method. Int. J. Nav. Archit. Ocean Eng. 3 (2), 122-125. https://doi.org/10.2478/IJNAOE-2013-0054
  29. Oger, G., Doring, M., Alessandrini, B., Ferrant, P., 2007. An improved SPH method: towards higher order convergence. J. Comput. Phys. 225 (2), 1472-1492. https://doi.org/10.1016/j.jcp.2007.01.039
  30. Quinlan, N.J., Basa, M., Lastiwka, M., 2006. Truncation error in mesh-free particle methods. Int. J. Numer. Meth. Eng. 66, 2064-2085. https://doi.org/10.1002/nme.1617
  31. Ren, B., He, M., Dong, P., Wen, H.J., 2015. Nonlinear simulations of wave- induced motions of a freely floating body using WCSPH method. Appl. Ocean Res. 50, 1-12. https://doi.org/10.1016/j.apor.2014.12.003
  32. Rudman, M., Cleary, P.W., 2016. The influence of mooring system in rogue wave impact on an offshore platform. Ocean Eng. 115, 168-181. https://doi.org/10.1016/j.oceaneng.2016.02.027
  33. Shadloo, M.S., Zainali, A., Sadek, S.H., Yildiz, M., 2011. Improved Incom- pressible Smoothed Particle Hydrodynamics method for simulating flow around bluff bodies. Comput. Methods Appl. Mech. Eng. 200 (9-12), 1008-1020. https://doi.org/10.1016/j.cma.2010.12.002
  34. Shao, S.D., Lo, E.Y.M., 2003. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv. Water Resour. 26 (7), 787-800. https://doi.org/10.1016/S0309-1708(03)00030-7
  35. Sriram, V., Ma, Q.W., 2012. Improved MLPG_R method for simulating 2D interaction between violent waves and elastic structures. J. Comput. Phys. 231 (22), 7650-7670. https://doi.org/10.1016/j.jcp.2012.07.003
  36. Takeda, H., Miyama, S.M., Sekiya, M., 1994. Numerical-simulation of viscous-flow by smoothed particle hydrodynamics. Prog. Theor. Phys. 92 (5), 939-960. https://doi.org/10.1143/ptp/92.5.939
  37. Yildiz, M., Rook, R.A., Suleman, A., 2009. SPH with the multiple boundary tangent method. Int. J. Numer. Methods Eng. 77 (10), 1416-1438. https://doi.org/10.1002/nme.2458
  38. Zhang, S., Morita, K., Fukuda, K., Shirakawa, N., 2006. An improved MPS method for numerical simulations of convective heat transfer problems. Int. J. Numer. Methods Fluids 51 (1), 31-47. https://doi.org/10.1002/fld.1106
  39. Zheng, X., Ma, Q.W., Duan, W.Y., 2014. Incompressible SPH method based on Rankine source solution for violent water wave simulation. J. Comput. Phys. 276, 291-314. https://doi.org/10.1016/j.jcp.2014.07.036
  40. Zheng, X., Shao, S.D., Khayyer, A., Duan, W.Y., Ma, Q.W., Liao, K.P., 2017. Corrected first-order derivative ISPH in water wave simulations. Coast. Eng. J. 59 (1), 1750010.

Cited by

  1. On the state-of-the-art of particle methods for coastal and ocean engineering vol.60, pp.1, 2018, https://doi.org/10.1080/21664250.2018.1436243
  2. SPH Simulation of Wave Scattering by a Heaving Submerged Horizontal Plate vol.1, pp.2, 2018, https://doi.org/10.1142/s2529807018400043
  3. The layout of submerged horizontal plate breakwater (SHPB) with respect to the tidal-level variation vol.60, pp.3, 2018, https://doi.org/10.1080/21664250.2018.1514758
  4. Modified incompressible SPH method for simulating free surface problems using highly irregular multi-resolution particle configurations vol.41, pp.10, 2018, https://doi.org/10.1007/s40430-019-1938-x
  5. Variable spaced particle in mesh‐free method to handle wave‐floating body interactions vol.91, pp.6, 2019, https://doi.org/10.1002/fld.4751
  6. Review of smoothed particle hydrodynamics: towards converged Lagrangian flow modelling vol.476, pp.2241, 2018, https://doi.org/10.1098/rspa.2019.0801