DOI QR코드

DOI QR Code

Epidemiology and treatment of antimicrobial-resistant gram-negative bacteria in Korea

  • Kim, Young Ah (Department of Laboratory Medicine, National Health Insurance Service Ilsan Hospital) ;
  • Park, Yoon Soo (Department of Internal Medicine, National Health Insurance Service Ilsan Hospital)
  • Received : 2018.02.04
  • Accepted : 2018.02.12
  • Published : 2018.03.01

Abstract

Antimicrobial resistance is becoming one of the greatest challenges to public health worldwide. Infections by antimicrobial-resistant organisms could result in the failure of treatment, increased medical costs, prolonged hospital stays, and an increased socioeconomic burden. Antimicrobial usage in Korea remains heavy, even after much effort to reduce their use. According to the Korean antimicrobial resistance surveillance system, the resistance rates of many bacteria are increasing. The resistance rate of Acinetobacter baumannii to imipenem in Korea increased to 85% in 2015, representing a major public threat. The reports of increased carbapenem resistance in Enterobacteriaceae are worrisome. More importantly, some carbapenem-resistant Enterobacteriaceae may result from the production of carbapenemases, which break down carbapenems. There are relatively few treatment options for extensively drug-resistant A. baumannii and carbapenem-resistant Enterobacteriaceae. Most reports are retrospective observational studies. Because there are little published data from randomized controlled trials, more data assessing antimicrobial treatment for extensively drug-resistant A. baumannii and carbapenem-resistant Enterobacteriaceae are needed to make treatment recommendations.

Keywords

References

  1. Martin-Loeches I, Diaz E, Valles J. Risks for multidrug-resistant pathogens in the ICU. Curr Opin Crit Care 2014;20:516-524. https://doi.org/10.1097/MCC.0000000000000124
  2. Yoon YK, Park GC, An H, Chun BC, Sohn JW, Kim MJ. Trends of antibiotic consumption in Korea according to national reimbursement data (2008-2012): a population- based epidemiologic study. Medicine (Baltimore) 2015;94:e2100. https://doi.org/10.1097/MD.0000000000002100
  3. Kim DS, Jang SM, Kim NS. Epidemiologic investigation on antibiotic use using defined daily dose. J Korean Acad Manag Care Pharm 2010;2:47-59.
  4. Lee Y, Kim YA, Song W, et al. Recent trends in antimicrobial resistance in intensive care units in Korea. Korean J Nosocomial Infect Control 2014;19:29-36. https://doi.org/10.14192/kjnic.2014.19.1.29
  5. Abbasi J. Infectious disease expert sees threat from colistin- resistant superbug. JAMA 2016;316:806-807. https://doi.org/10.1001/jama.2016.9690
  6. Ryu S. The new Korean action plan for containment of antimicrobial resistance. J Glob Antimicrob Resist 2017;8:70-73. https://doi.org/10.1016/j.jgar.2016.10.013
  7. Kim D, Ahn JY, Lee CH, et al. Increasing resistance to extended- spectrum cephalosporins, fluoroquinolone, and carbapenem in gram-negative bacilli and the emergence of carbapenem non-susceptibility in Klebsiella pneumoniae: analysis of Korean Antimicrobial Resistance Monitoring System (KARMS) data from 2013 to 2015. Ann Lab Med 2017;37:231-239. https://doi.org/10.3343/alm.2017.37.3.231
  8. Cai Y, Chai D, Wang R, Liang B, Bai N. Colistin resistance of Acinetobacter baumannii: clinical reports, mechanisms and antimicrobial strategies. J Antimicrob Chemother 2012;67:1607-1615. https://doi.org/10.1093/jac/dks084
  9. Kim EJ, Kwak YG, Park SH, et al. Trends of device utilization ratios in intensive care units over 10-year period in South Korea: device utilization ratio as a new aspect of surveillance. J Hosp Infect 2017.
  10. Yong D, Shin HB, Kim YK, et al. Increase in the prevalence of carbapenem-resistant Acinetobacter isolates and ampicillin-resistant non-typhoidal salmonella species in Korea: a KONSAR Study conducted in 2011. Infect Chemother 2014;46:84-93. https://doi.org/10.3947/ic.2014.46.2.84
  11. World Health Organization. Global antimicrobial resistance surveillance system [Internet]. Geneva: World Health Organization, c2018 [cited 2018 Feb 8]. Available from: http://www.who.int/antimicrobial-resistance/ publications/surveillance-system-manual/en/.
  12. Jasemi S, Douraghi M, Adibhesami H, et al. Trend of extensively drug-resistant Acinetobacter baumannii and the remaining therapeutic options: a multicenter study in Tehran, Iran over a 3-year period. Lett Appl Microbiol 2016;63:466-472. https://doi.org/10.1111/lam.12669
  13. Moon SY, Peck KR, Chang HH, et al. Clinical experience of tigecycline treatment in infections caused by extensively drug-resistant Acinetobacter spp. Microb Drug Resist 2012;18:562-566. https://doi.org/10.1089/mdr.2012.0010
  14. Johnson JR, Johnston B, Clabots C, Kuskowski MA, Castanheira M. Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States. Clin Infect Dis 2010;51:286-294. https://doi.org/10.1086/653932
  15. Rogers BA, Sidjabat HE, Paterson DL. Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemother 2011;66:1-14. https://doi.org/10.1093/jac/dkq415
  16. Kim SY, Park YJ, Johnson JR, Yu JK, Kim YK, Kim YS. Prevalence and characteristics of Escherichia coli sequence type 131 and its H30 and H30Rx subclones: a multicenter study from Korea. Diagn Microbiol Infect Dis 2016;84:97-101. https://doi.org/10.1016/j.diagmicrobio.2015.10.016
  17. Kim H, Kim YA, Park YS, Choi MH, Lee GI, Lee K. Risk factors and molecular features of sequence type (ST) 131 extended-spectrum ${\beta}$-lactamase-producing Escherichia coli in community-onset bacteremia. Sci Rep 2017;7:14640. https://doi.org/10.1038/s41598-017-14621-4
  18. Kim YA, Kim JJ, Kim H, Lee K. Community-onset extended- spectrum-${\beta}$-lactamase-producing Escherichia coli sequence type 131 at two Korean community hospitals: the spread of multidrug-resistant E. coli to the community via healthcare facilities. Int J Infect Dis 2017;54:39-42. https://doi.org/10.1016/j.ijid.2016.11.010
  19. Johnson JR, Tchesnokova V, Johnston B, et al. Abrupt emergence of a single dominant multidrug-resistant strain of Escherichia coli. J Infect Dis 2013;207:919-928. https://doi.org/10.1093/infdis/jis933
  20. DSouza R, Pinto NA, Hwang I, et al. Molecular epidemiology and resistome analysis of multidrug-resistant ST11 Klebsiella pneumoniae strain containing multiple copies of extended-spectrum ${\beta}$-lactamase genes using whole-genome sequencing. New Microbiol 2017;40:38-44.
  21. Wachino J, Arakawa Y. Exogenously acquired 16S rRNA methyltransferases found in aminoglycoside-resistant pathogenic Gram-negative bacteria: an update. Drug Resist Updat 2012;15:133-148. https://doi.org/10.1016/j.drup.2012.05.001
  22. Pfeifer Y, Cullik A, Witte W. Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. Int J Med Microbiol 2010;300:371-379. https://doi.org/10.1016/j.ijmm.2010.04.005
  23. Bauernfeind A, Chong Y, Schweighart S. Extended broad spectrum beta-lactamase in Klebsiella pneumoniae including resistance to cephamycins. Infection 1989;17:316-321. https://doi.org/10.1007/BF01650718
  24. Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 2007;20:440-458. https://doi.org/10.1128/CMR.00001-07
  25. Bonomo RA, Burd EM, Conly J, et al. Carbapenemase- producing organisms: a global scourge! Clin Infect Dis 2017.
  26. Lee HJ, Choi JK, Cho SY, et al. Carbapenem-resistant enterobacteriaceae: prevalence and risk factors in a single community-based hospital in Korea. Infect Chemother 2016;48:166-173. https://doi.org/10.3947/ic.2016.48.3.166
  27. Kim MN, Yong D, An D, et al. Nosocomial clustering of NDM-1-producing Klebsiella pneumoniae sequence type 340 strains in four patients at a South Korean tertiary care hospital. J Clin Microbiol 2012;50:1433-1436. https://doi.org/10.1128/JCM.06855-11
  28. Jeong SH, Lee KM, Lee J, et al. Clonal and horizontal spread of the blaOXA-232 gene among Enterobacteriaceae in a Korean hospital. Diagn Microbiol Infect Dis 2015;82:70-72. https://doi.org/10.1016/j.diagmicrobio.2015.02.001
  29. Hong SK, Yong D, Kim K, et al. First outbreak of KPC-2-producing Klebsiella pneumoniae sequence type 258 in a hospital in South Korea. J Clin Microbiol 2013;51:3877-3879. https://doi.org/10.1128/JCM.01730-13
  30. Kim YA, Park YS, Youk T, Lee H, Lee K. Abrupt increase in rate of imipenem resistance in Acinetobacter baumannii complex strains isolated from general hospitals in Korea and correlation with carbapenem administration during 2002-2013. Ann Lab Med 2018;38:179-181. https://doi.org/10.3343/alm.2018.38.2.179
  31. Lee Y, Kim YR, Kim J, et al. Increasing prevalence of bla- OXA-23-carrying Acinetobacter baumannii and the emergence of blaOXA-182-carrying Acinetobacter nosocomialis in Korea. Diagn Microbiol Infect Dis 2013;77:160-163. https://doi.org/10.1016/j.diagmicrobio.2013.06.009
  32. Doi Y, Murray GL, Peleg AY. Acinetobacter baumannii: evolution of antimicrobial resistance-treatment options. Semin Respir Crit Care Med 2015;36:85-98. https://doi.org/10.1055/s-0034-1398388
  33. Lee K, Lim JB, Yum JH, et al. bla(VIM-2) cassette-containing novel integrons in metallo-beta-lactamase-producing Pseudomonas aeruginosa and Pseudomonas putida isolates disseminated in a Korean hospital. Antimicrob Agents Chemother 2002;46:1053-1058. https://doi.org/10.1128/AAC.46.4.1053-1058.2002
  34. Hong DJ, Bae IK, Jang IH, Jeong SH, Kang HK, Lee K. Epidemiology and characteristics of metallo-${\beta}$-lactamase- producing Pseudomonas aeruginosa. Infect Chemother 2015;47:81-97. https://doi.org/10.3947/ic.2015.47.2.81
  35. Kim YA, Park YS, Youk T, Lee H, Lee K. Correlation of aminoglycoside consumption and amikacin- or gentamicin- resistant Pseudomonas aeruginosa in long-term nationwide analysis: is antibiotic cycling an effective policy for reducing antimicrobial resistance? Ann Lab Med 2018;38:176-178. https://doi.org/10.3343/alm.2018.38.2.176
  36. Almaghrabi R, Clancy CJ, Doi Y, et al. Carbapenem-resistant Klebsiella pneumoniae strains exhibit diversity in aminoglycoside-modifying enzymes, which exert differing effects on plazomicin and other agents. Antimicrob Agents Chemother 2014;58:4443-4451. https://doi.org/10.1128/AAC.00099-14
  37. Lemos EV, de la Hoz FP, Einarson TR, et al. Carbapenem resistance and mortality in patients with Acinetobacter baumannii infection: systematic review and meta-analysis. Clin Microbiol Infect 2014;20:416-423. https://doi.org/10.1111/1469-0691.12363
  38. Lee NY, Lee HC, Ko NY, et al. Clinical and economic impact of multidrug resistance in nosocomial Acinetobacter baumannii bacteremia. Infect Control Hosp Epidemiol 2007;28:713-719. https://doi.org/10.1086/517954
  39. Lee H, Lee H. Clinical and economic evaluation of multidrug- resistant Acinetobacter baumannii colonization in the intensive care unit. Infect Chemother 2016;48:174-180. https://doi.org/10.3947/ic.2016.48.3.174
  40. Batirel A, Balkan II, Karabay O, et al. Comparison of colistin- carbapenem, colistin-sulbactam, and colistin plus other antibacterial agents for the treatment of extremely drug-resistant Acinetobacter baumannii bloodstream infections. Eur J Clin Microbiol Infect Dis 2014;33:1311-1322. https://doi.org/10.1007/s10096-014-2070-6
  41. Shields RK, Clancy CJ, Gillis LM, et al. Epidemiology, clinical characteristics and outcomes of extensively drug-resistant Acinetobacter baumannii infections among solid organ transplant recipients. PLoS One 2012;7:e52349. https://doi.org/10.1371/journal.pone.0052349
  42. Tzouvelekis LS, Markogiannakis A, Piperaki E, Souli M, Daikos GL. Treating infections caused by carbapenemase- producing Enterobacteriaceae. Clin Microbiol Infect 2014;20:862-872. https://doi.org/10.1111/1469-0691.12697
  43. Falagas ME, Lourida P, Poulikakos P, Rafailidis PI, Tansarli GS. Antibiotic treatment of infections due to carbapenem- resistant Enterobacteriaceae: systematic evaluation of the available evidence. Antimicrob Agents Chemother 2014;58:654-663. https://doi.org/10.1128/AAC.01222-13
  44. Falagas ME, Kasiakou SK. Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis 2005;40:1333-1341. https://doi.org/10.1086/429323
  45. Nation RL, Velkov T, Li J. Colistin and polymyxin B: peas in a pod, or chalk and cheese? Clin Infect Dis 2014;59:88-94. https://doi.org/10.1093/cid/ciu213
  46. Kassamali Z, Danziger L. To B or not to B, that is the question: is it time to replace colistin with polymyxin B? Pharmacotherapy 2015;35:17-21. https://doi.org/10.1002/phar.1510
  47. Roberts JA, Kirkpatrick CM, Roberts MS, Robertson TA, Dalley AJ, Lipman J. Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: intermittent bolus versus continuous administration? Monte Carlo dosing simulations and subcutaneous tissue distribution. J Antimicrob Chemother 2009;64:142-150. https://doi.org/10.1093/jac/dkp139
  48. MacVane SH, Kuti JL, Nicolau DP. Prolonging ${\beta}$-lactam infusion: a review of the rationale and evidence, and guidance for implementation. Int J Antimicrob Agents 2014;43:105-113. https://doi.org/10.1016/j.ijantimicag.2013.10.021
  49. Qureshi ZA, Paterson DL, Potoski BA, et al. Treatment outcome of bacteremia due to KPC-producing Klebsiella pneumoniae: superiority of combination antimicrobial regimens. Antimicrob Agents Chemother 2012;56:2108- 2113. https://doi.org/10.1128/AAC.06268-11
  50. Lopez-Cortes LE, Cisneros JM, Fernandez-Cuenca F, et al. Monotherapy versus combination therapy for sepsis due to multidrug-resistant Acinetobacter baumannii: analysis of a multicentre prospective cohort. J Antimicrob Chemother 2014;69:3119-3126. https://doi.org/10.1093/jac/dku233

Cited by

  1. Carbapenem-resistant Enterobacteriaceae: recent updates and treatment strategies vol.61, pp.4, 2018, https://doi.org/10.5124/jkma.2018.61.4.281
  2. Antimicrobial Therapy for Infections Caused by Carbapenem-Resistant Gram-Negative Bacteria vol.93, pp.5, 2018, https://doi.org/10.3904/kjm.2018.93.5.439
  3. Carbapenem-Resistant Enterobacteriaceae: Rapid Laboratory Diagnosis and Surveillance Culture for Infection Control vol.94, pp.2, 2018, https://doi.org/10.3904/kjm.2019.94.2.170
  4. Performance Evaluation of the Newly Developed BD Phoenix NMIC-500 Panel Using Clinical Isolates of Gram-Negative Bacilli vol.39, pp.5, 2019, https://doi.org/10.3343/alm.2019.39.5.470
  5. Diagnostic performance of the Xpert Carba-R assay for active surveillance of rectal carbapenemase-producing organisms in intensive care unit patients vol.8, pp.1, 2019, https://doi.org/10.1186/s13756-019-0579-2
  6. Colonization Prevalence and Risk Factor Analysis of Carbapenem-Resistant Acinetobacter baumannii in an Intensive Care Unit without Outbreaks vol.24, pp.2, 2018, https://doi.org/10.14192/kjicp.2019.24.2.81
  7. Prevalence and Characteristics of Carbapenemase-Producing Enterobacteriaceae in Three Tertiary-Care Korean University Hospitals between 2017 and 2018 vol.73, pp.6, 2018, https://doi.org/10.7883/yoken.jjid.2020.043
  8. Using comparative genomics to understand molecular features of carbapenem-resistant Acinetobacter baumannii from South Korea causing invasive infections and their clinical implications vol.15, pp.2, 2018, https://doi.org/10.1371/journal.pone.0229416
  9. Carbapenem내성 Acinetobacter baumannii로 인한 인공호흡기연관 폐렴 환아에서 고용량 Ampicillin-Sulbactam 과 Colistin 항균제 병합요법의 치료적 예후: 예비 연구 vol.27, pp.1, 2020, https://doi.org/10.14776/piv.2020.27.e5
  10. Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Fresh Produce and Agricultural Environments in Korea vol.83, pp.7, 2018, https://doi.org/10.4315/jfp-19-483
  11. Xpert Carba-R assay for detection of carbapenemase-producing organisms in patients admitted to emergency rooms vol.99, pp.50, 2020, https://doi.org/10.1097/md.0000000000023410