DOI QR코드

DOI QR Code

Air Pollution and Stroke

  • Lee, Kuan Ken (BHF Centre for Cardiovascular Science, University of Edinburgh) ;
  • Miller, Mark R. (BHF Centre for Cardiovascular Science, University of Edinburgh) ;
  • Shah, Anoop S.V. (BHF Centre for Cardiovascular Science, University of Edinburgh)
  • Received : 2017.12.13
  • Accepted : 2018.01.19
  • Published : 2018.01.31

Abstract

The adverse health effects of air pollution have long been recognised; however, there is less awareness that the majority of the morbidity and mortality caused by air pollution is due to its effects on the cardiovascular system. Evidence from epidemiological studies have demonstrated a strong association between air pollution and cardiovascular diseases including stroke. Although the relative risk is small at an individual level, the ubiquitous nature of exposure to air pollution means that the absolute risk at a population level is on a par with "traditional" risk factors for cardiovascular disease. Of particular concern are findings that the strength of this association is stronger in low and middle income countries where air pollution is projected to rise as a result of rapid industrialisation. The underlying biological mechanisms through which air pollutants exert their effect on the vasculature are still an area of intense discussion. A greater understanding of the effect size and mechanisms is necessary to develop effective strategies at individual and policy levels to mitigate the adverse cardiovascular effects of air pollution.

Keywords

Acknowledgement

Supported by : British Heart Foundation

References

  1. GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016;388:1659-1724. https://doi.org/10.1016/S0140-6736(16)31679-8
  2. Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R, Basu NN, et al. The Lancet Commission on pollution and health. Lancet. 2017 Oct 19 [Epub]. https://doi.org/10.1016/S0140-6736(17)32345-0.
  3. Mustafic H, Jabre P, Caussin C, Murad MH, Escolano S, Tafflet M, et al. Main air pollutants and myocardial infarction: a systematic review and meta-analysis. JAMA 2012;307:713-721. https://doi.org/10.1001/jama.2012.126
  4. Shah AS, Langrish JP, Nair H, McAllister DA, Hunter AL, Donaldson K, et al. Global association of air pollution and heart failure: a systematic review and meta-analysis. Lancet 2013;382:1039-1048. https://doi.org/10.1016/S0140-6736(13)60898-3
  5. Shah AS, Lee KK, McAllister DA, Hunter A, Nair H, Whiteley W, et al. Short term exposure to air pollution and stroke: systematic review and meta-analysis. BMJ 2015;350:h1295.
  6. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016;388:1459-1544. https://doi.org/10.1016/S0140-6736(16)31012-1
  7. GBD 2015 Neurological Disorders Collaborator Group. Global, regional, and national burden of neurological disorders during 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol 2017;16:877-897. https://doi.org/10.1016/S1474-4422(17)30299-5
  8. Nichols M, Townsend N, Scarborough P, Rayner M. Cardiovascular disease in Europe 2014: epidemiological update. Eur Heart J 2014;35:2950-2959. https://doi.org/10.1093/eurheartj/ehu299
  9. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015;525:367-371. https://doi.org/10.1038/nature15371
  10. Kim AS, Cahill E, Cheng NT. Global stroke belt: geographic variation in stroke burden worldwide. Stroke 2015;46:3564-3570. https://doi.org/10.1161/STROKEAHA.115.008226
  11. Yadama GN, Katzman M, Yumkella KK, Mark MS. Fires, Fuel, and the Fate of 3 Billion: The State of the Energy Impoverished. Oxford, UK: Oxford University Press, 2013.
  12. Bonjour S, Adair-Rohani H, Wolf J, Bruce NG, Mehta S, Pruss-Ustun A, et al. Solid fuel use for household cooking: country and regional estimates for 1980-2010. Environ Health Perspect 2013;121:784-790. https://doi.org/10.1289/ehp.1205987
  13. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017;389:1907-1918. https://doi.org/10.1016/S0140-6736(17)30505-6
  14. GBD 2016 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017;390:1345-1422. https://doi.org/10.1016/S0140-6736(17)32366-8
  15. Eeftens M, Beelen R, de Hoogh K, Bellander T, Cesaroni G, Cirach M, et al. Development of Land Use Regression models for PM(2.5), PM(2.5) absorbance, PM(10) and PM(coarse) in 20 European study areas; results of the ESCAPE project. Environ Sci Technol 2012;46:11195-11205. https://doi.org/10.1021/es301948k
  16. van Donkelaar A, Martin RV, Brauer M, Boys BL. Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. Environ Health Perspect 2015;123:135-143. https://doi.org/10.1289/ehp.123-A135
  17. Nawrot TS, Perez L, Kunzli N, Munters E, Nemery B. Public health importance of triggers of myocardial infarction: a comparative risk assessment. Lancet 2011;377:732-740. https://doi.org/10.1016/S0140-6736(10)62296-9
  18. Hoek G, Krishnan RM, Beelen R, Peters A, Ostro B, Brunekreef B, et al. Long-term air pollution exposure and cardio-respiratory mortality: a review. Environ Health 2013;12:43. https://doi.org/10.1186/1476-069X-12-43
  19. Faustini A, Rapp R, Forastiere F. Nitrogen dioxide and mortality: review and meta-analysis of long-term studies. Eur Respir J 2014;44:744-753. https://doi.org/10.1183/09031936.00114713
  20. Zhang P, Dong G, Sun B, Zhang L, Chen X, Ma N, et al. Longterm exposure to ambient air pollution and mortality due to cardiovascular disease and cerebrovascular disease in Shenyang, China. PLoS One 2011;6:e20827. https://doi.org/10.1371/journal.pone.0020827
  21. Stafoggia M, Cesaroni G, Peters A, Andersen ZJ, Badaloni C, Beelen R, et al. Long-term exposure to ambient air pollution and incidence of cerebrovascular events: results from 11 European cohorts within the ESCAPE project. Environ Health Perspect 2014;122:919-925.
  22. Miller KA, Siscovick DS, Sheppard L, Shepherd K, Sullivan JH, Anderson GL, et al. Long-term exposure to air pollution and incidence of cardiovascular events in women. N Engl J Med 2007;356:447-458. https://doi.org/10.1056/NEJMoa054409
  23. Lipsett MJ, Ostro BD, Reynolds P, Goldberg D, Hertz A, Jerrett M, et al. Long-term exposure to air pollution and cardiorespiratory disease in the California teachers study cohort. Am J Respir Crit Care Med 2011;184:828-835. https://doi.org/10.1164/rccm.201012-2082OC
  24. Atkinson RW, Carey IM, Kent AJ, van Staa TP, Anderson HR, Cook DG. Long-term exposure to outdoor air pollution and incidence of cardiovascular diseases. Epidemiology 2013;24:44-53. https://doi.org/10.1097/EDE.0b013e318276ccb8
  25. Kloog I, Coull BA, Zanobetti A, Koutrakis P, Schwartz JD. Acute and chronic effects of particles on hospital admissions in New-England. PLoS One 2012;7:e34664. https://doi.org/10.1371/journal.pone.0034664
  26. Newman JD, Thurston GD, Cromar K, Guo Y, Rockman CB, Fisher EA, et al. Particulate air pollution and carotid artery stenosis. J Am Coll Cardiol 2015;65:1150-1151. https://doi.org/10.1016/j.jacc.2014.12.052
  27. Knox EG. Meteorological associations of cerebrovascular disease mortality in England and Wales. J Epidemiol Community Health 1981;35:220-223. https://doi.org/10.1136/jech.35.3.220
  28. Zhang ZF, Yu SZ, Zhou GD. Indoor air pollution of coal fumes as a risk factor of stroke, Shanghai. Am J Public Health 1988;78:975-977. https://doi.org/10.2105/AJPH.78.8.975
  29. Schwartz J. What are people dying of on high air pollution days? Environ Res 1994;64:26-35. https://doi.org/10.1006/enrs.1994.1004
  30. Dominici F, Peng RD, Bell ML, Pham L, McDermott A, Zeger SL, et al. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 2006;295:1127-1134. https://doi.org/10.1001/jama.295.10.1127
  31. Leiva G MA, Santibanez DA, Ibarra ES, Matus CP, Seguel R. A five-year study of particulate matter (PM2.5) and cerebrovascular diseases. Environ Pollut 2013;181:1-6. https://doi.org/10.1016/j.envpol.2013.05.057
  32. Villeneuve PJ, Johnson JY, Pasichnyk D, Lowes J, Kirkland S, Rowe BH. Short-term effects of ambient air pollution on stroke: who is most vulnerable? Sci Total Environ 2012;430:193-201. https://doi.org/10.1016/j.scitotenv.2012.05.002
  33. Miller MR, Raftis JB, Langrish JP, McLean SG, Samutrtai P, Connell SP, et al. Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano 2017;11:4542-4552. https://doi.org/10.1021/acsnano.6b08551
  34. Mills NL, Donaldson K, Hadoke PW, Boon NA, MacNee W, Cassee FR, et al. Adverse cardiovascular effects of air pollution. Nat Clin Pract Cardiovasc Med 2009;6:36-44. https://doi.org/10.1038/ncpcardio1399
  35. Guo L, Li B, Miao JJ, Yun Y, Li GK, Sang N. Seasonal variation in air particulate matter (PM10) exposure-induced ischemia-like injuries in the rat brain. Chem Res Toxicol 2015;28:431-439. https://doi.org/10.1021/tx500392n
  36. Davis DA, Akopian G, Walsh JP, Sioutas C, Morgan TE, Finch CE. Urban air pollutants reduce synaptic function of CA1 neurons via an NMDA/NO pathway in vitro. J Neurochem 2013;127:509-519. https://doi.org/10.1111/jnc.12395
  37. Morgan TE, Davis DA, Iwata N, Tanner JA, Snyder D, Ning Z, et al. Glutamatergic neurons in rodent models respond to nanoscale particulate urban air pollutants in vivo and in vitro. Environ Health Perspect 2011;119:1003-1009. https://doi.org/10.1289/ehp.1002973
  38. Wallenborn JG, Schladweiler MC, Nyska A, Johnson JA, Thomas R, Jaskot RH, et al. Cardiopulmonary responses of Wistar Kyoto, spontaneously hypertensive, and stroke-prone spontaneously hypertensive rats to particulate matter (PM) exposure. J Toxicol Environ Health A 2007;70:1912-1922. https://doi.org/10.1080/15287390701551233
  39. Fujimaki H, Kurokawa Y, Yamamoto S, Satoh M. Distinct requirements for interleukin-6 in airway inflammation induced by diesel exhaust in mice. Immunopharmacol Immunotoxicol 2006;28:703-714. https://doi.org/10.1080/08923970601067433
  40. Oppenheim HA, Lucero J, Guyot AC, Herbert LM, McDonald JD, Mabondzo A, et al. Exposure to vehicle emissions results in altered blood brain barrier permeability and expression of matrix metalloproteinases and tight junction proteins in mice. Part Fibre Toxicol 2013;10:62. https://doi.org/10.1186/1743-8977-10-62
  41. Lucking AJ, Lundback M, Mills NL, Faratian D, Barath SL, Pourazar J, et al. Diesel exhaust inhalation increases thrombus formation in man. Eur Heart J 2008;29:3043-3051. https://doi.org/10.1093/eurheartj/ehn464
  42. Mills NL, Tornqvist H, Gonzalez MC, Vink E, Robinson SD, Soderberg S, et al. Ischemic and thrombotic effects of dilute diesel-exhaust inhalation in men with coronary heart disease. N Engl J Med 2007;357:1075-1082. https://doi.org/10.1056/NEJMoa066314
  43. Pope CA 3rd, Bhatnagar A, McCracken JP, Abplanalp W, Conklin DJ, O'Toole T. Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation. Circ Res 2016;119:1204-1214. https://doi.org/10.1161/CIRCRESAHA.116.309279
  44. O'Toole TE, Hellmann J, Wheat L, Haberzettl P, Lee J, Conklin DJ, et al. Episodic exposure to fine particulate air pollution decreases circulating levels of endothelial progenitor cells. Circ Res 2010;107:200-203. https://doi.org/10.1161/CIRCRESAHA.110.222679
  45. Wellenius GA, Boyle LD, Wilker EH, Sorond FA, Coull BA, Koutrakis P, et al. Ambient fine particulate matter alters cerebral hemodynamics in the elderly. Stroke 2013;44:1532-1536. https://doi.org/10.1161/STROKEAHA.111.000395
  46. Miller MR. The role of oxidative stress in the cardiovascular actions of particulate air pollution. Biochem Soc Trans 2014;42:1006-1011. https://doi.org/10.1042/BST20140090
  47. Miller MR, Shaw CA, Langrish JP. From particles to patients: oxidative stress and the cardiovascular effects of air pollution. Future Cardiol 2012;8:577-602. https://doi.org/10.2217/fca.12.43
  48. Seaton A, MacNee W, Donaldson K, Godden D. Particulate air pollution and acute health effects. Lancet 1995;345:176-178. https://doi.org/10.1016/S0140-6736(95)90173-6
  49. Tsai DH, Amyai N, Marques-Vidal P, Wang JL, Riediker M, Mooser V, et al. Effects of particulate matter on inflammatory markers in the general adult population. Part Fibre Toxicol 2012;9:24. https://doi.org/10.1186/1743-8977-9-24
  50. Ghio AJ, Kim C, Devlin RB. Concentrated ambient air particles induce mild pulmonary inflammation in healthy human volunteers. Am J Respir Crit Care Med 2000;162(3 Pt 1):981-988. https://doi.org/10.1164/ajrccm.162.3.9911115
  51. Hoffmann B, Moebus S, Dragano N, Stang A, Mohlenkamp S, Schmermund A, et al. Chronic residential exposure to particulate matter air pollution and systemic inflammatory markers. Environ Health Perspect 2009;117:1302-1308. https://doi.org/10.1289/ehp.0800362
  52. Mills NL, Tornqvist H, Robinson SD, Gonzalez M, Darnley K, MacNee W, et al. Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous fibrinolysis. Circulation 2005;112:3930-3936. https://doi.org/10.1161/CIRCULATIONAHA.105.588962
  53. Gong KW, Zhao W, Li N, Barajas B, Kleinman M, Sioutas C, et al. Air-pollutant chemicals and oxidized lipids exhibit genome- wide synergistic effects on endothelial cells. Genome Biol 2007;8:R149. https://doi.org/10.1186/gb-2007-8-7-r149
  54. Bruske I, Hampel R, Baumgartner Z, Ruckerl R, Greven S, Koenig W, et al. Ambient air pollution and lipoprotein-associated phospholipase A(2) in survivors of myocardial infarction. Environ Health Perspect 2011;119:921-926. https://doi.org/10.1289/ehp.1002681
  55. Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, et al. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A 2002;65:1531-1543. https://doi.org/10.1080/00984100290071658
  56. Aung HH, Lame MW, Gohil K, He G, Denison MS, Rutledge JC, et al. Comparative gene responses to collected ambient particles in vitro: endothelial responses. Physiol Genomics 2011;43:917-929. https://doi.org/10.1152/physiolgenomics.00051.2011
  57. Lee CC, Huang SH, Yang YT, Cheng YW, Li CH, Kang JJ. Motorcycle exhaust particles up-regulate expression of vascular adhesion molecule-1 and intercellular adhesion molecule-1 in human umbilical vein endothelial cells. Toxicol In Vitro 2012;26:552-560. https://doi.org/10.1016/j.tiv.2012.01.021
  58. Montiel-Davalos A, Alfaro-Moreno E, Lopez-Marure R. PM2.5 and PM10 induce the expression of adhesion molecules and the adhesion of monocytic cells to human umbilical vein endothelial cells. Inhal Toxicol 2007;19 Suppl 1:91-98. https://doi.org/10.1080/08958370701495212
  59. Sumanasekera WK, Ivanova MM, Johnston BJ, Dougherty SM, Sumanasekera GU, Myers SR, et al. Rapid effects of diesel exhaust particulate extracts on intracellular signaling in human endothelial cells. Toxicol Lett 2007;174:61-73. https://doi.org/10.1016/j.toxlet.2007.08.014
  60. Chao MW, Kozlosky J, Po IP, Strickland PO, Svoboda KK, Cooper K, et al. Diesel exhaust particle exposure causes redistribution of endothelial tube VE-cadherin. Toxicology 2011;279:73-84. https://doi.org/10.1016/j.tox.2010.09.011
  61. Li R, Ning Z, Cui J, Yu F, Sioutas C, Hsiai T. Diesel exhaust particles modulate vascular endothelial cell permeability: implication of ZO-1 expression. Toxicol Lett 2010;197:163-168. https://doi.org/10.1016/j.toxlet.2010.05.017
  62. Balasubramanian SK, Poh KW, Ong CN, Kreyling WG, Ong WY, Yu LE. The effect of primary particle size on biodistribution of inhaled gold nano-agglomerates. Biomaterials 2013;34:5439-5452. https://doi.org/10.1016/j.biomaterials.2013.03.080
  63. Hopkins LE, Laing EA, Peake JL, Uyeminami D, Mack SM, Li X, et al. Repeated iron-soot exposure and nose-to-brain transport of inhaled ultrafine particles. Toxicol Pathol. 2017 Jan 1 [Epub]. https://doi.org/10.1177/0192623317729222.
  64. Pope CA 3rd, Verrier RL, Lovett EG, Larson AC, Raizenne ME, Kanner RE, et al. Heart rate variability associated with particulate air pollution. Am Heart J 1999;138(5 Pt 1):890-899. https://doi.org/10.1016/S0002-8703(99)70014-1
  65. Pieters N, Plusquin M, Cox B, Kicinski M, Vangronsveld J, Nawrot TS. An epidemiological appraisal of the association between heart rate variability and particulate air pollution: a meta-analysis. Heart 2012;98:1127-1135. https://doi.org/10.1136/heartjnl-2011-301505
  66. Tsuji H, Larson MG, Venditti FJ Jr, Manders ES, Evans JC, Feldman CL, et al. Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study. Circulation 1996;94:2850-2855. https://doi.org/10.1161/01.CIR.94.11.2850
  67. La Rovere MT, Pinna GD, Maestri R, Mortara A, Capomolla S, Febo O, et al. Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation 2003;107:565-570. https://doi.org/10.1161/01.CIR.0000047275.25795.17
  68. Wang T, Lang GD, Moreno-Vinasco L, Huang Y, Goonewardena SN, Peng YJ, et al. Particulate matter induces cardiac arrhythmias via dysregulation of carotid body sensitivity and cardiac sodium channels. Am J Respir Cell Mol Biol 2012;46:524-531. https://doi.org/10.1165/rcmb.2011-0213OC
  69. Nadziejko C, Fang K, Narciso S, Zhong M, Su WC, Gordon T, et al. Effect of particulate and gaseous pollutants on spontaneous arrhythmias in aged rats. Inhal Toxicol 2004;16:373-380. https://doi.org/10.1080/08958370490439533
  70. Chung JW, Bang OY, Ahn K, Park SS, Park TH, Kim JG, et al. Air pollution is associated with ischemic stroke via cardiogenic embolism. Stroke 2017;48:17-23. https://doi.org/10.1161/STROKEAHA.116.015428
  71. Miller MR, Shah AS. Ambient particles and cerebrovascular disease. In: Bondy SC, Campbell A. Inflammation, Aging, and Oxidative Stress. Cham, CH: Springer, 2016:133-160.
  72. World Health Organization. WHO Global Urban Ambient Air Pollution Database (update 2016). http://www.who.int/phe/health_topics/outdoorair/databases/cities/en/. 2016. Accessed January 19, 2018.

Cited by

  1. Unconventional, Yet Important, Risk Factors for Stroke vol.20, pp.1, 2018, https://doi.org/10.5853/jos.2018.00241
  2. Air Pollutant and Health-Efficiency Evaluation Based on a Dynamic Network Data Envelopment Analysis vol.15, pp.9, 2018, https://doi.org/10.3390/ijerph15092046
  3. Effect of Particulate Matter on Human Health, Prevention, and Imaging Using PET or SPECT vol.29, pp.3, 2018, https://doi.org/10.14316/pmp.2018.29.3.81
  4. Long-Term Exposure to Air Pollution and Survival After Ischemic Stroke : The China National Stroke Registry Cohort vol.50, pp.3, 2019, https://doi.org/10.1161/strokeaha.118.023264
  5. Particle Formation in a Complex Environment vol.10, pp.5, 2018, https://doi.org/10.3390/atmos10050275
  6. Fine Particulate Matter Exposure and Cerebrospinal Fluid Markers of Vascular Injury vol.71, pp.3, 2018, https://doi.org/10.3233/jad-190563
  7. Air pollution and stroke. A new modifiable risk factor is in the air vol.175, pp.10, 2018, https://doi.org/10.1016/j.neurol.2019.03.003
  8. Potential role of polycyclic aromatic hydrocarbons as mediators of cardiovascular effects from combustion particles vol.18, pp.1, 2018, https://doi.org/10.1186/s12940-019-0514-2
  9. Air Pollution and Central Nervous System Disease: A Review of the Impact of Fine Particulate Matter on Neurological Disorders vol.8, pp.None, 2020, https://doi.org/10.3389/fpubh.2020.575330
  10. Cumulative Lifetime Burden of Cardiovascular Disease From Early Exposure to Air Pollution vol.9, pp.6, 2018, https://doi.org/10.1161/jaha.119.014944
  11. Air pollution and human health vol.29, pp.1, 2018, https://doi.org/10.13181/mji.com.204572
  12. Systemic Exposure to Air Pollution Induces Oxidative Stress and Inflammation in Mouse Brain, Contributing to Neurodegeneration Onset vol.21, pp.10, 2020, https://doi.org/10.3390/ijms21103699
  13. Oxidative stress and the cardiovascular effects of air pollution vol.151, pp.None, 2020, https://doi.org/10.1016/j.freeradbiomed.2020.01.004
  14. Coronavirus Disease 2019 and Stroke vol.22, pp.2, 2018, https://doi.org/10.5853/jos.2020.01760
  15. Ambient Air Pollution Increases the Risk of Cerebrovascular and Neuropsychiatric Disorders through Induction of Inflammation and Oxidative Stress vol.21, pp.12, 2020, https://doi.org/10.3390/ijms21124306
  16. Decrease in Hospital Admissions for Transient Ischemic Attack, Mild, and Moderate Stroke During the COVID-19 Era vol.51, pp.8, 2020, https://doi.org/10.1161/strokeaha.120.030481
  17. We all breathe the same air … and we are all mortal vol.116, pp.11, 2018, https://doi.org/10.1093/cvr/cvaa126
  18. Effects of particulate matter on atherosclerosis: a link via high-density lipoprotein (HDL) functionality? vol.17, pp.None, 2018, https://doi.org/10.1186/s12989-020-00367-x
  19. From Transfer to Knowledge Co-Production: A Transdisciplinary Research Approach to Reduce Black Carbon Emissions in Metro Manila, Philippines vol.12, pp.23, 2018, https://doi.org/10.3390/su122310043
  20. Delays in the Management of Patients with Acute Ischemic Stroke during the COVID-19 Outbreak Period: A Multicenter Study in Daegu, Korea vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/6687765
  21. Trends and Challenges of Wearable Multimodal Technologies for Stroke Risk Prediction vol.21, pp.2, 2018, https://doi.org/10.3390/s21020460
  22. Hypertension and stroke in Asia: A comprehensive review from HOPE Asia vol.23, pp.3, 2018, https://doi.org/10.1111/jch.14099
  23. Mechanisms of Resorcinol Antagonism of Benzo[a]pyrene-Induced Damage to Human Keratinocytes vol.29, pp.2, 2018, https://doi.org/10.4062/biomolther.2020.083
  24. Long-Term Exposure to PM2.5 and Cognitive Decline: A Longitudinal Population-Based Study vol.80, pp.2, 2021, https://doi.org/10.3233/jad-200852
  25. Site-specific variation in mass concentration and chemical components in ambient nanoparticles (PM0.1) in North Sumatra Province-Indonesia vol.12, pp.6, 2021, https://doi.org/10.1016/j.apr.2021.101062
  26. Response to Letter to the Editor vol.30, pp.8, 2018, https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105723
  27. Long-term exposure to fine particulate matter, lung function and cognitive performance: A prospective Dutch cohort study on the underlying routes vol.201, pp.None, 2021, https://doi.org/10.1016/j.envres.2021.111533
  28. Exposure to particulate matter and carbon monoxide and cause-specific Cardiovascular-Respiratory disease mortality in Ahvaz vol.40, pp.4, 2021, https://doi.org/10.1080/15569543.2020.1716256
  29. An Air Particulate Pollutant Induces Neuroinflammation and Neurodegeneration in Human Brain Models vol.8, pp.21, 2018, https://doi.org/10.1002/advs.202101251
  30. Do improved biomass cookstove interventions improve indoor air quality and blood pressure? A systematic review and meta-analysis vol.290, pp.None, 2018, https://doi.org/10.1016/j.envpol.2021.117997
  31. Ambient air pollution and the risk of acute myocardial infarction and stroke: A national cohort study vol.204, pp.no.pa, 2022, https://doi.org/10.1016/j.envres.2021.111975