DOI QR코드

DOI QR Code

High-Resolution Wind Simulation over Incheon International Airport with the Unified Model's Rose Nesting Suite from KMA Operational Forecasts

  • Prasanna, Venkatraman (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Choi, Hee Wook (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Jung, Jia (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Lee, Young Gon (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Kim, Baek Jo (Applied Meteorology Research Division, National Institute of Meteorological Sciences)
  • Received : 2017.01.26
  • Accepted : 2017.07.26
  • Published : 2018.05.30

Abstract

This study employs the Unified Model (UM) with the rose nesting suite at 300-m resolution to construct a high spatial and temporal resolution wind simulation model for predicting wind gusts over the Incheon International Airport (IIA). The model can enable efficient aircraft operation and avert accidents due to sudden wind gusts. Simulation results with different inputs from the Korea Meteorological Administration (KMA) operational data assimilation and prediction systems are compared with an observed dataset. The 300-m nested prediction systems are built using the 17 km Global Prediction System (GDAPS) and 1.5 km Local Prediction System (LDAPS) of KMA. They are downscaled to 300 m resolution using five and three nesting domains from the GDAPS and LDAPS, respectively. The model results are validated against automated weather stations (AWS) to determine the accuracy of the UM for simulating high-resolution winds over the IIA. Both nesting suites are identical, with the only difference being their initial (IC) and lateral boundary conditions (LBC). The major difference between LDAPS and GDAPS downscaled model results is that the GDAPS downscaled system has a lower wind direction RMSE and the LDAPS downscaled system has a lower wind speed RMSE for up to 48 hours of verification against observations; thus, it is better than the GDAPS downscaled system. Two case studies were performed; one for wind gust conditions and one for vertical wind shear over the IIA. The 300 m model performs better in both cases, making it useful for wind gust and wind shear predictions over the airport.

Keywords

Acknowledgement

Grant : Research and Development for KMA Weather, Climate, and Earth System Services

Supported by : National Institute of Meteorological Sciences (NIMS)

References

  1. Abel, S. J., and B. J. Shipway, 2007: A comparison of cloud-resolving model simulations of trade wind cumulus with aircraft observations taken during RICO. Quart. J. Roy. Meteor. Soc., 133, 781-794, doi:10.1002/qj.55.
  2. Boutle, I. A., J. E. J. Eyre, and A. P. Lock, 2014: Seamless strato-cumulus simulation across the turbulent grey zone. Mon. Wea. Rev., 142, 1655-1668, doi:10.1175/MWR-D-13-00229.1.
  3. Boutle, I. A., A. Finnenkoetter, A. P. Lock, and H. Wells, 2016: The London Model: Forecasting fog at 333 m resolution. Quart. J. Roy. Meteor. Soc., 142, 360-371, doi:10.1002/qj.2656.
  4. Chan, P. W., and K. K. Hon, 2016: Performance of super high resolution numerical weather prediction model in forecasting terrain-disrupted airflow at the Hong Kong International Airport: Case studies. Meteor. Appl., 23, 101-114, doi:10.1002/met.1534.
  5. Charney, J. G., and N. A. Phillips, 1953: Numerical integration of the quasigeostrophic equations for barotropic and simple baroclinic flows. J. Meteor., 10, 71-99, doi:10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2.
  6. Clark, P., N. Roberts, H. Lean, S. P. Ballard, and C. Charlton-Perez, 2016: Convection-permitting models: a step-change in rainfall forecasting. Meteor. Appl., 23, 165-181, doi:10.1002/met.1538.
  7. Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quart. J. Roy. Meteor. Soc., 139, 1445-1461, doi:10.1002/qj.2054.
  8. Dash, S. K., D. K. Sahu, and S. C. Sahu, 2013: Impact of AWS observations in WRF-3DVAR data assimilation system: A case study on abnormal warming condition in Odisha. Nat. Hazards, 65, 767-798, doi:10.1007/s11069-012-0393-0.
  9. Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office's global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 1759-1782, doi:10.1256/qj.04.101.
  10. Dickerson, M. H., 1978: MASCON-A mass consistent atmospheric flux model for regions with complex terrain. J. Appl. Meteorol., 17, 241-253, doi:10.1175/1520-0450(1978)017<0241:MMCAFM>2.0.CO;2.
  11. Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689-719, doi:10.1002/qj.49712253107.
  12. Golding, B. W., and Coauthors, 2014: Forecasting capabilities for the London 2012 Olympics. Bull. Amer. Meteor. Soc., 883-896, doi:10.1175/BAMS-D-13-00102.1.
  13. Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability dependent closure. Mon. Wea. Rev., 118, 1483-1506, doi:10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2.
  14. Jordi, B., A. Folch, A. S. Afif, and J. R. Miro, 2015: Assimilation of surface AWS using 3DVAR and LAPS and their effects on short-term high-resolution weather forecasts. Atmos. Res., 156, 160-173, doi:10.1016/j.atmosres.2014.12.019.
  15. Kim, D. J., 2015: Center Report from KMA Forecasting System Operation & Research. WGNE-30, College Park, Maryland, United States, 23-26 March 2015. [Available online at https://www.wmo.int/pages/prog/arep/wwrp/new/documents/05_centre_report_kma.pdf.]
  16. Kim, J.-H., and H.-Y. Chun, 2010: A numerical study of Clear-Air Turbulence (CAT) encounters over South Korea on 2 April 2007. J. Appl. Meteor. Climatol., 49, 2381-2403, doi:10.1175/2010JAMC2449.1.
  17. Kim, J.-H., and H.-Y. Chun, 2011: Statistics and possible sources of aviation turbulence over South Korea. J. Appl. Meteor. Climatol., 50, 311-324, doi:10.1175/2010JAMC2492.1.
  18. Kim, J.-H., and H.-Y. Chun, 2012: A numerical simulation of convectively induced turbulence above deep convection. J. Appl. Meteor. Climatol., 51, 1180-1200, doi:10.1175/JAMC-D-11-0140.1.
  19. Kim, J.-H., and H.-Y. Chun, R. D. Sharman, and S. B. Trier, 2014: The role of vertical shear on aviation turbulence within cirrus bands of a simulated western Pacific cyclone. Mon. Weather Rev., 142, 2794-2813, doi:10.1175/MWR-D-14-00008.1.
  20. Kim, J.-H., W. N. Chan, B. Sridhar, and R. D. Sharman, 2015: Combined winds and turbulence prediction system for automated air-traffic management applications. J. Appl. Meteorol. Climatol., 54, 766-784, doi:10.1175/jamc-d-14-0216.1.
  21. Lock, A. P., 2001: The numerical representation of entrainment in parameterizations of boundary layer turbulent mixing. Mon. Wea. Rev., 129, 1148-1163, doi:10.1175/1520-0493(2001)129<1148:TNROEI>2.0.CO;2.
  22. Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: scheme description and single-column model tests. Mon. Wea. Rev., 128, 3187-3199, doi:10.1175/1520-0493.
  23. Mayne, N. J., I. Baraffe, D. M. Acreman, C. Smith, N. Wood, D. S. Amundsen, J. Thuburn, and D. R. Jackson, 2014: Using the UM dynamical cores to reproduce idealised 3-D flows. Geosci. Model Dev., 7, 3059-3087, doi:10.5194/gmd-7-3059-2014.
  24. Orr, A., T. Phillips, S. Webster, A. Elvidge, M. Weeks, S. Hosking, and J. Turner, 2014: Met Office Unified Model high-resolution simulations of a strong wind event in Antarctica. Quart. J. Roy. Meteor. Soc., 140, 2287-2297, doi:10.1002/qj.2296.
  25. Regmi, R. P., and S. Maharjan, 2015: Trapped mountain wave excitations over the Kathmandu valley, Nepal. Asia-Pac. J. Atmos. Sci., 51, 303-309, doi:10.1007/s13143-015-0078-1.
  26. Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Part 1: The basic experiment. Mon. Wea. Rev., 91, 99-164, doi:10.1175/1520-0493(1963)091 2.3.CO2.
  27. Smith, R. N. B., 1990: A scheme for predicting layer cloud and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116, 435-460, doi:10.1002/qj.49711649210.
  28. Smith, S. A., S. B. Vosper, and P. R. Field, 2015: Sensitivity of orographic precipitation enhancement to horizontal resolution in the operational Met Office Weather forecasts. Meteor. Appl., 22, 14-24, doi:10.1002/met.1352.
  29. Stein, T. H. M., R. J. Hogan, K. E. Hanley, J. C. Nicol, H. W. Lean, R. S. Plant, P. A. Clark, and C. E. Halliwell, 2014: The three-dimensional morphology of simulated and observed convective storms over southern England. Mon. Wea. Rev., 142, 3264-3283, doi:10.1175/MWR-D-13-00372.1.
  30. Stein, T. H. M., R. J. Hogan, K. E. Hanley, J. C. Nicol, H. W. Lean, R. S. Plant, P. A. Clark, and C. E. Halliwell, 2015: The DYMECS Project: A statistical approach for the evaluation of convective storms in high-resolution NWP models. Bull. Amer. Meteor. Soc., 96, 939-951, doi:10.1175/BAMS-D-13-00279.1.
  31. Van Genuchten, M. T., 1980: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892-898, doi:10.2136/sssaj1980.03615995004400050002x.
  32. Vosper, S., E. Carter, H. Lean, A. Lock, P. Clark, and S. Webster, 2013: High-resolution modelling of valley cold pools. Atmos. Sci. Lett., 14, 193-199, doi:10.1002/asl2.439.
  33. Vosper, S. B., J. K. Hughes, A. P. Lock, P. F. Sheridan, A. N. Ross, B. Jemmett-Smith, and A. R. Brown, 2014: Cold-pool formation in a narrow valley. Quart. J. Roy. Meteor. Soc., 140, 699-714, doi:10.1002/qj.2160.
  34. Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK meteorological office unified model. Quart. J. Roy. Meteor. Soc., 125, 1607-1636, doi:10.1002/qj. 49712555-707.
  35. Wilson, D. R., A. C. Bushell, A. M. Kerr-Munslow, J. D. Price, and C. J. Morcrette, 2008: PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Quart. J. Roy. Meteor. Soc., 134, 2093-2107, doi:10.1002/qj.333.
  36. Wong, W.-K., C.-S. Lau, and P.-W. Chan, 2013: Aviation model: A finescale numerical weather prediction system for aviation applications at the Hong Kong international airport. Adv. Meteor., 2013, 532475, doi:10.1155/2013/532475.
  37. Wood, N., and Coauthors, 2014: An inherently mass-conserving semiimplicit semi-Lagrangian discretisation of the deep-atmosphere global non-hydrostatic equations. Quart. J. Roy. Meteor. Soc., 140, 1505-1520, doi:10.1002/qj.2235.

Cited by

  1. Characteristics of LDAPS-Predicted Surface Wind Speed and Temperature at Automated Weather Stations with Different Surrounding Land Cover and Topography in Korea vol.11, pp.11, 2020, https://doi.org/10.3390/atmos11111224
  2. Visibility Prediction over South Korea Based on Random Forest vol.12, pp.5, 2018, https://doi.org/10.3390/atmos12050552
  3. 고해상도 지상 기온 상세화 모델 개발 vol.31, pp.5, 2018, https://doi.org/10.14191/atmos.2021.31.5.473