DOI QR코드

DOI QR Code

Improving Fire Resistance of Cotton Fabric through Layer-by-Layer Assembled Graphene Multilayer Nanocoating

  • Jang, Wonjun (Department of Mechanical Engineering, Myongji University) ;
  • Chung, Il Jun (Department of Mechanical Engineering, Myongji University) ;
  • Kim, Junwoo (Department of Mechanical Engineering, Myongji University) ;
  • Seo, Seongmin (Department of Mechanical Engineering, Myongji University) ;
  • Park, Yong Tae (Department of Mechanical Engineering, Myongji University) ;
  • Choi, Kyungwho (New Transportation Systems Research Center, Korea Railroad Research Institute)
  • Received : 2018.03.26
  • Published : 2018.05.31

Abstract

In this study, thin films containing poly(vinyl alcohol) (PVA) and graphene nanoplatelets (GNPs), stabilized with poly(4-styrene-sulfonic acid) (PSS), were assembled by a simple and cost-effective layer-by-layer (LbL) technique in order to introduce the anti-flammability to cotton. These anti-flammable layers were characterized by using UV-vis spectrometry and quartz crystal microbalance as a function of the number of bilayers deposited. Scanning electron microscopy was used to visualize the morphology of the thin film coatings on the cotton fabric. The graphene-polymer thin films introduced anti-flammable properties through thermally stable carbonaceous layers at a high temperature. The thermal stability and flame retardant property of graphene-coated cotton was demonstrated by thermogravimetric analysis, cone calorimetry, and vertical flame test. The results indicate that LbL-assembled graphene-polymer thin films can be applied largely in the field of flame retardant.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), Myongji University

References

  1. E. Lecoeur, I. Vroman, S. Bourbigot, T. M. Lam and R. Delobel, Polymer Degradation and Stability 74, 487 (2001). https://doi.org/10.1016/S0141-3910(01)00172-0
  2. J. Alongi, F. Carosio, A. Frache and G. Malucelli, Carbohydrate Polymers 92, 114 (2013). https://doi.org/10.1016/j.carbpol.2012.08.086
  3. M. Sain, S. H. Park, F. Suhara and S. Law, Polymer Degradation and Stability 83, 363 (2004). https://doi.org/10.1016/S0141-3910(03)00280-5
  4. F. Laoutid, L. Bonnaud, M. Alexandre, J-M. Lopez-Cuesta and Ph. Dubois, Materials Science and Engineering: R: Reports 63, 100 (2009). https://doi.org/10.1016/j.mser.2008.09.002
  5. H. Qin, S. Zhang, C. Zhao, G. Hu and M. Yang, Polymer 46, 8386 (2005). https://doi.org/10.1016/j.polymer.2005.07.019
  6. A. Bergman et al., Environment International 49, 57 (2012). https://doi.org/10.1016/j.envint.2012.08.003
  7. M. Rakotomalala, S. Wagner and M. Doring, Materials 3, 4300 (2010). https://doi.org/10.3390/ma3084300
  8. P. O. Darnerud, Environment International 29, 841 (2003). https://doi.org/10.1016/S0160-4120(03)00107-7
  9. M. Ema, S. Fujii, M. Hirata-Koizumi and M. Matsumoto, Reproductive Toxicology 25, 335 (2008). https://doi.org/10.1016/j.reprotox.2007.12.004
  10. S. Kemmlein, D. Herzke and R. J. Law, J Chromatography A 1216, 320 (2009). https://doi.org/10.1016/j.chroma.2008.05.085
  11. Q. L. Li, X. L. Wang, D. Y. Wang, Y. Z. Wang, X. N. Feng and G. H. Zheng, J Applied Polymer Science 122, 342 (2011). https://doi.org/10.1002/app.34182
  12. H. Lu, L. Song and Y. Hu, Polymers for Advanced Technologies 22, 379 (2011). https://doi.org/10.1002/pat.1891
  13. H. Pan, Y. Pan, W. Wang, L. Song, Y. Hu and K. M. Liew, Industrial & Engineering Chemistry Research 53, 14315 (2014). https://doi.org/10.1021/ie502215p
  14. X. Ding et al., Surface and Coatings Technology 305, 184 (2016). https://doi.org/10.1016/j.surfcoat.2016.08.035
  15. Y. S. Kim, R. Davis, A. A. Cain and J. C. Grunlan, Polymer 52, 2847 (2011). https://doi.org/10.1016/j.polymer.2011.04.023
  16. Y. C. Li et al., ACS Nano 4, 3325 (2010). https://doi.org/10.1021/nn100467e
  17. F. Carosio, G. Laufer, J. Alongi, G. Camino and J. C. Grunlan, Polymer Degradation and Stability 96, 745 (2011). https://doi.org/10.1016/j.polymdegradstab.2011.02.019
  18. G. Laufer, F. Carosio, R. Martinez, G. Camino and J. C. Grunlan, J Colloid and Interface Science 356, 69 (2011). https://doi.org/10.1016/j.jcis.2010.12.072
  19. Y. T. Park et al., Advanced Functional Materials 25, 575 (2015). https://doi.org/10.1002/adfm.201402553
  20. G. Decher, Y. Lvov and J. Schmitt, Thin Solid Films 244, 772 (1994). https://doi.org/10.1016/0040-6090(94)90569-X
  21. P. T. Hammond, Advanced Materials 16, 1271 (2004). https://doi.org/10.1002/adma.200400760
  22. M. K. Gheith et al., Advanced Materials 18, 2975 (2006). https://doi.org/10.1002/adma.200600878
  23. Y. T. Park, A. Y. Ham and J. C. Grunlan, J Physical Chemistry C 114, 6325 (2010). https://doi.org/10.1021/jp911985g
  24. Y. T. Park, A. Y. Ham and J. C. Grunlan, Journal of Materials Chemistry 21, 363 (2011). https://doi.org/10.1039/C0JM02524K
  25. Y. T. Park, A. Y. Ham, Y. H. Yang and J. C. Grunlan, RSC Advances 1, 662 (2011). https://doi.org/10.1039/c1ra00225b
  26. J. C. Grunlan, J. K. Choi and A. Lin, Biomacromolecules 6, 1149 (2005). https://doi.org/10.1021/bm049528c
  27. S. Y. Wong et al., Biomacromolecules 13, 719 (2012). https://doi.org/10.1021/bm201637e
  28. M. A. Priolo, D. Gamboa, K. M. Holder and J. C. Grunlan, Nano Letters 10, 4970 (2010). https://doi.org/10.1021/nl103047k
  29. Y. H. Yang, M. Haile, A. Malek, Y. T Park and J. C Grunlan, Macromolecules 44, 1450 (2011). https://doi.org/10.1021/ma1026127
  30. J. J Park, W. J. Hyun, S. C. Mun, Y. T. Park and O. O. Park, ACS Applied Materials & Interfaces 7, 6317 (2015). https://doi.org/10.1021/acsami.5b00695
  31. M. Zhou and S. Dong, Accounts of Chemical Research 44, 1232 (2011). https://doi.org/10.1021/ar200096g
  32. P. T. Hammond, Materials Today 15, 196 (2012). https://doi.org/10.1016/S1369-7021(12)70090-1
  33. I. J. Chung et al., J Materials Chemistry A 6, 3108 (2018). https://doi.org/10.1039/C7TA09876F
  34. S. Seo, S. Lee and Y. T. Park, Review of Scientific Instruments 87, 5 (2016).
  35. G. Laufer, C. Kirkland, A. A. Cain and J. C. Grunlan, ACS Applied Materials and Interfaces 4, 1643 (2012). https://doi.org/10.1021/am2017915
  36. F. Carosio, A. Di Blasio, J. Alongi and G. Malucelli, Polymer 54, 5148 (2013). https://doi.org/10.1016/j.polymer.2013.07.029
  37. Y. S. Kim, Y. C. Li, W. M. Pitts, M. Werrel and R. D. Davis, ACS Applied Materials and Interfaces 6, 2146 (2014). https://doi.org/10.1021/am405259n
  38. Y. C. Li, Y. S. Kim, J. Shields and R. Davis, J. Materials Chemistry A 1, 12987 (2013). https://doi.org/10.1039/c3ta11936j
  39. J. C. Yang, W. Liao, S. B. Deng, Z. J. Cao and Y. Z. Wang, Carbohydrate Polymers 151, 434 (2016). https://doi.org/10.1016/j.carbpol.2016.05.087

Cited by

  1. An efficient anti-flaming phosphorus-containing guanazole derivative for cotton fabric vol.26, pp.4, 2018, https://doi.org/10.1007/s10570-019-02275-6
  2. Solvent-free synthesis of silicon-nitrogen-phosphorus flame retardant for cotton fabrics vol.26, pp.11, 2018, https://doi.org/10.1007/s10570-019-02554-2
  3. 기능성화 산화 그래핀과 폴리인산암모늄을 이용한 직물 난연성 향상 vol.33, pp.4, 2018, https://doi.org/10.7234/composres.2020.33.4.177
  4. An environmentally friendly approach to fabricating flame retardant, antibacterial and antifungal cotton fabrics via self-assembly of guanazole-metal complex vol.273, pp.None, 2018, https://doi.org/10.1016/j.jclepro.2020.122832
  5. Mechanically Sustainable Starch-Based Flame-Retardant Coatings on Polyurethane Foams vol.13, pp.8, 2018, https://doi.org/10.3390/polym13081286
  6. Dual-functional intumescent fire-retardant/self-healing water-based plywood coatings vol.154, pp.None, 2018, https://doi.org/10.1016/j.porgcoat.2021.106187