DOI QR코드

DOI QR Code

Drought Risk Analysis in Seoul Using Cheugugi and Climate Change Scenario Based Rainfall Data

측우기 및 미래 기후변화 시나리오 자료를 활용한 서울지역의 가뭄 위험도 분석

  • 김지은 (한양대학교 대학원 건설환경시스템공학과) ;
  • 유지수 (한양대학교 대학원 건설환경공학과) ;
  • 이주헌 (중부대학교 토목공학과) ;
  • 김태웅 (한양대학교 공학대학 건설환경공학과)
  • Received : 2017.12.08
  • Accepted : 2018.03.16
  • Published : 2018.06.01

Abstract

Considering the effect of climate change, a quantitative analysis of extreme drought is needed to reduce the damage from extreme droughts. Therefore, in this study, a quantitative risk analysis of extreme drought was conducted. The threshold level method was applied to define a drought event using Cheugugi rainfall data in past, gauged rainfall data in present, and climate change scenario rainfall data in future. A bivariate drought frequency analysis was performed using the copula function to simultaneously consider two major drought characteristics such as duration and severity. Based on the bivariate drought frequency curves, the risks for the past, present and future were calculated and the risks for future extreme drought were analyzed comparing with the past and present. As a result, the mean drought duration of the future was shorter than that of past and present, however, the mean drought severity was much larger. Therefore short term and severe droughts were expected to occur in the future. In addition, the analysis of the maximum drought risk indicated that the future maximum drought risk was 1.39~1.94 times and 1.33~1.81 times higher than the past and present. Finally, the risk of extreme drought over past and present maximum drought in the future was very high, ranging from 0.989 to 1.0, and the occurrence probability of extreme drought was high in the future.

기후변화의 영향으로 극심한 가뭄에 의한 피해가 증가하고 있으며, 이러한 피해를 줄이기 위하여 극한 가뭄에 대한 정량적인 분석이 필요하다. 따라서 본 연구에서는 극한 가뭄의 위험도에 대한 정량적 분석을 위해 임계수준방법을 측우기 강우자료, 관측 강우자료, 미래 기후변화 시나리오 강우 자료에 적용하여 가뭄사상을 정의하고 가뭄의 지속기간과 심도를 도출하였다. 또한, 코플라 함수를 활용하여 가뭄 지속기간 및 심도를 동시에 고려하는 이변량 가뭄빈도해석을 실시하였다. 이변량 가뭄빈도곡선을 바탕으로 과거 현재 미래에 대한 위험도를 산정했으며, 과거 및 현재를 기준으로 미래의 극한 가뭄에 대한 위험도를 분석하였다. 그 결과 과거 및 현재에 비해 미래의 평균 가뭄 지속기간은 짧게 나타났으나 평균 가뭄 심도는 매우 크게 나타났다. 따라서 미래에는 짧은 기간의 심한 가뭄들이 발생할 것으로 예측된다. 또한, 최대가뭄의 위험도를 분석한 결과 미래의 최대 가뭄 위험도는 과거 및 현재에 비해 각각 1.39~1.94배, 1.33~1.81배 큰 것으로 확인되었다. 최종적으로 미래에서 과거 및 현재의 기왕최대 가뭄 이상의 극한 가뭄위험도는 0.989와 1.0 사이의 범위를 가지는 것으로 나타나, 미래에는 극한 가뭄의 발생확률이 높은 것으로 판단된다.

Keywords

References

  1. Carrao, H., Singleton, A., Naumann, G., Barbosa, P. and Vogt, J. (2014). "An optimized system for the classification of meteorological drought intensity with applications in frequency analysis." Journal Appl. Meteor. Climatol., Vol. 53, pp. 1943-1960. https://doi.org/10.1175/JAMC-D-13-0167.1
  2. Chen, L., Singh, V. P., Guo, S., Mishra, A. K. and Guo, J. (2013). "Drought analysis using copulas." Journal Hydrol. Eng., Vol. 18, No. 7, pp. 797-808. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000697
  3. Jhun, J. G. and Moon, B. K. (1997). "Restorations and analyses of rainfall amount observed by Chukwookee." Asia-Pac, Journal Atmos. Sci., Vol. 33, No. 4, pp. 691-707.
  4. Karimi, M. and Shahedi, K. (2013). "Hydrological drought analysis of Karkheh river basin in Iran using variable threshold level method." Curr. World. Environ. Journal, Vol. 8, No. 3, pp. 419-428. https://doi.org/10.12944/CWE.8.3.11
  5. Kim, N. S., Kim, J. S., Jang, H. W. and Lee, J. H. (2015). "Hydrologic risk analysis based on extreme drought over the Korean peninsula under climate change." Journal Korea Soc. Hazard Mitig., Vol. 15, No. 4, pp. 45-52 (in Korean). https://doi.org/10.9798/KOSHAM.2015.15.4.45
  6. Kim, T. W., Valdes, J. B. and Yoo, C. S. (2003). "Nonparametric approach for estimating return periods of droughts in arid regions." Journal Hydrol. Eng., Vol. 8, No. 5, pp. 237-246. https://doi.org/10.1061/(ASCE)1084-0699(2003)8:5(237)
  7. Kim, T. W., Valdés, J. B. and Yoo, C. S. (2006). "Nonparametric approach for bivariate drought characterization using Palmer drought index." J. Hydrol. Eng., Vol. 11, No. 2, pp. 134-143. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:2(134)
  8. Kwon, Y. M. and Kim, T. W. (2009). "Derived I-D-F curve in Seoul using bivariate precipitation frequency analysis." Journal Korean Society of Civ. Eng., Vol. 29, No. 2B, pp. 155-162 (in Korean).
  9. Lee, T. and Salas, J. D. (2011). "Copula-based stochastic simulation of hydrological data applied to nile river flows." Hydrology Research, Vol. 42, No. 4, pp. 318-330. https://doi.org/10.2166/nh.2011.085
  10. Ministry of Land, Infrastructure and Transport (MLIT) (2016). 2015 Drought investigation report (in Korean).
  11. Nam, D. H., Noh, S. C., Park, S. Y., Chung, I. H. and Park, C. H. (2010). "Statistical analysis of effect factor for excess sludge reduction in the OSA process." Seoul Studies, Vol. 11, No. 4, pp. 161-172.
  12. Nelson, R. B. (1999). An Introduction to Copulas, Springer, New York.
  13. Park, B. S., Lee, J. H., Kim, C. J. and Jang, H. W. (2013). "Projection of future drought of Korea based on probabilistic approach using multi-model and multi climate change scenarios." Journal Korean Society of Civ. Eng., Vol. 33, No. 5, pp. 1871-1885 (in Korean). https://doi.org/10.12652/Ksce.2013.33.5.1871
  14. Serinaldi, F., Bonaccorso, B., Cancelliere, A. and Grimaldi, S. (2009). "Probabilistic characterization of drought properties through copulas." Phys. Chem. Earth, Vol. 34, No. 10-12, pp. 596-605. https://doi.org/10.1016/j.pce.2008.09.004
  15. Shiau, J. T. and Shen, H. W. (2001). "Recurrence analysis of hydrologic droughts of differing severity." Journal Water Resour. Plan. Manage., Vol. 127, No. 1, pp. 30-40. https://doi.org/10.1061/(ASCE)0733-9496(2001)127:1(30)
  16. Wong, G., Lambert, M. F., Leonard, M. and Metcalfe, A. V. (2010). "Drought analysis using trivariate copulas conditional on climate states." Journal Hydrol. Eng., Vol. 15, No. 2, pp. 129-141. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000169
  17. Yoo, C. S., Kim, D. H. and Kim, H. J. (2007). "Evaluation of major storm events both measured by Chukwooki and recorded in annals of Chosen Dynasty: 1. Qualitative approach" Journal Korea Water Resour. Assoc., Vol. 40, No. 7, pp. 533-543 (in Korean). https://doi.org/10.3741/JKWRA.2007.40.7.533
  18. Yoo, J. Y., Kwon, H. H., Lee, J. H. and Kim, T. W. (2016a). "Influence of evapotranspiration of future drought risk using bivariate drought frequency curves." KSCE Journal Civ. Eng., Vol. 20, No. 5, pp. 2059-2069. https://doi.org/10.1007/s12205-015-0078-9
  19. Yoo, J. Y., Shin, J. Y., Kim, D. K. and Kim, T. W. (2013). "Drought risk analysis using stochastic rainfall generation model and copula functions." Journal Korea Water Resour. Assoc., Vol. 46, No. 4, pp. 425-437 (in Korean). https://doi.org/10.3741/JKWRA.2013.46.4.425
  20. Yoo, J. Y., Yu, J. S., Kwon, H. H. and Kim, T. W. (2016b). "Determination of drought events considering the possibility of relieving drought and estimation of design drought severity." Journal Korea Water Resour. Assoc., Vol. 49, No. 4, pp. 275-282. https://doi.org/10.3741/JKWRA.2016.49.4.275
  21. Yu, J. S., Shin, J. Y., Kwon, M. S. and Kim, T. W. (2017). "Bivariate drought frequency analysis to evaluate water supply capacity of multi-purpose dams." Journal Korean Society of Civ. Eng., Vol. 37, No. 1, pp. 231-238 (in Korean). https://doi.org/10.12652/Ksce.2017.37.1.0231
  22. Yu, J. S., Yoo, J. Y., Lee, J. H. and Kim, T. W. (2016). "Estimation of drought risk through the bivariate drought frequency analysis using copula functions." Journal Korea Water Resour. Assoc., Vol. 49, No. 3, pp. 217-225 (in Korean). https://doi.org/10.3741/JKWRA.2016.49.3.217
  23. Zhang, L. and Singh, V. P. (2006). "Bivariate flood frequency analysis using the copula method." Journal Hydrol. Eng., Vol. 11, pp. 150-164. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:2(150)