DOI QR코드

DOI QR Code

Long-Term Priming by Three Small Molecules Is a Promising Strategy for Enhancing Late Endothelial Progenitor Cell Bioactivities

  • Kim, Yeon-Ju (Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University) ;
  • Ji, Seung Taek (Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University) ;
  • Kim, Da Yeon (Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University) ;
  • Jung, Seok Yun (Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University) ;
  • Kang, Songhwa (Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University) ;
  • Park, Ji Hye (Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University) ;
  • Jang, Woong Bi (Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University) ;
  • Yun, Jisoo (Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University) ;
  • Ha, Jongseong (Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University) ;
  • Lee, Dong Hyung (Department of Obstetrics and Gynecology, Biomedical Research Institute, Pusan National University School of Medicine) ;
  • Kwon, Sang-Mo (Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University)
  • Received : 2018.01.05
  • Accepted : 2018.04.30
  • Published : 2018.06.30

Abstract

Endothelial progenitor cells (EPCs) and outgrowth endothelial cells (OECs) play a pivotal role in vascular regeneration in ischemic tissues; however, their therapeutic application in clinical settings is limited due to the low quality and quantity of patient-derived circulating EPCs. To solve this problem, we evaluated whether three priming small molecules (tauroursodeoxycholic acid, fucoidan, and oleuropein) could enhance the angiogenic potential of EPCs. Such enhancement would promote the cellular bioactivities and help to develop functionally improved EPC therapeutics for ischemic diseases by accelerating the priming effect of the defined physiological molecules. We found that preconditioning of each of the three small molecules significantly induced the differentiation potential of $CD34^+$ stem cells into EPC lineage cells. Notably, long-term priming of OECs with the three chemical cocktail (OEC-3C) increased the proliferation potential of EPCs via ERK activation. The migration, invasion, and tube-forming capacities were also significantly enhanced in OEC-3Cs compared with unprimed OECs. Further, the cell survival ratio was dramatically increased in OEC-3Cs against $H_2O_2$-induced oxidative stress via the augmented expression of Bcl-2, a pro-survival protein. In conclusion, we identified three small molecules for enhancing the bioactivities of ex vivo-expanded OECs for vascular repair. Long-term 3C priming might be a promising methodology for EPC-based therapy against ischemic diseases.

Keywords

References

  1. Annex, B.H. (2013). Therapeutic angiogenesis for critical limb ischaemia. Nat. Rev. Cardiol. 10, 387-396. https://doi.org/10.1038/nrcardio.2013.70
  2. Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., Witzenbichler, B., Schatteman, G., and Isner, J.M. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964-967. https://doi.org/10.1126/science.275.5302.964
  3. Asahara, T., Kawamoto, A., and Masuda, H. (2011). Concise review: Circulating endothelial progenitor cells for vascular medicine. Stem Cells 29, 1650-1655. https://doi.org/10.1002/stem.745
  4. Beck, L., Jr., and D'Amore, P.A. (1997). Vascular development: cellular and molecular regulation. FASEB J. 11, 365-373. https://doi.org/10.1096/fasebj.11.5.9141503
  5. Cai, H., and Harrison, D.G. (2000). Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ. Res. 87, 840-844. https://doi.org/10.1161/01.RES.87.10.840
  6. Carmeliet, P. (2004). Manipulating angiogenesis in medicine. J. Int. Med. 255, 538-561. https://doi.org/10.1111/j.1365-2796.2003.01297.x
  7. Cho, J.G., Lee, J.H., Hong, S.H., Lee, H.N., Kim, C.M., Kim, S.Y., Yoon, K.J., Oh, B.J., Kim, J.H., Jung, S.Y., et al. (2015). Tauroursodeoxycholic acid, a bile acid, promotes blood vessel repair by recruiting vasculogenic progenitor cells. Stem Cells 33, 792-805. https://doi.org/10.1002/stem.1901
  8. Choi, S.H., Joo, H.B., Lee, S.J., Choi, H.Y., Park, J.H., Baek, S.H., and Kwon, S.M. (2015). Oleuropein prevents angiotensin II-mediated: Human vascular progenitor cell depletion. Int. J. Cardiol. 181, 160-165. https://doi.org/10.1016/j.ijcard.2014.11.174
  9. Czabotar, P.E., Lessene, G., Strasser, A., and Adams, J.M. (2014). Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15, 49-63. https://doi.org/10.1038/nrm3722
  10. Diaz-Lopez, A., Iniesta, P., Moran, A., Ortega, P., Fernandez-Marcelo, T., Sanchez-Pernaute, A., Torres, A.J., Benito, M., and De Juan, C. (2010). Expression of human MDGA1 increases cell motility and cell-cell adhesion and reduces adhesion to extracellular matrix proteins in MDCK Cells. Cancer Microenviron. 4, 23-32.
  11. Duan, W., Yang, Y., Yi, W., Yan, J., Liang, Z., Wang, N., Li, Y., Chen, W., Yu, S., Jin, Z., et al. (2013). New role of JAK2/STAT3 signaling in endothelial cell oxidative stress injury and protective effect of melatonin. PloS one 8, e57941. https://doi.org/10.1371/journal.pone.0057941
  12. Fadini, G.P., Losordo, D., and Dimmeler, S. (2012). Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ. Res. 110, 624-637. https://doi.org/10.1161/CIRCRESAHA.111.243386
  13. Franco, J.G., Lisboa, P.C., Lima, N.S., Amaral, T.A., Peixoto-Silva, N., Resende, A.C., Oliveira, E., Passos, M.C., and Moura, E.G. (2013). Resveratrol attenuates oxidative stress and prevents steatosis and hypertension in obese rats programmed by early weaning. J. Nutr. Biochem. 24, 960-966. https://doi.org/10.1016/j.jnutbio.2012.06.019
  14. Guo, Y., Li, P., Gao, L., Zhang, J., Yang, Z., Bledsoe, G., Chang, E., Chao, L., and Chao, J. (2017). Kallistatin reduces vascular senescence and aging by regulating microRNA-34a-SIRT1 pathway. Aging Cell 16, 837-846. https://doi.org/10.1111/acel.12615
  15. Hur, J., Yoon, C.H., Kim, H.S., Choi, J.H., Kang, H.J., Hwang, K.K., Oh, B.H., Lee, M.M., and Park, Y.B. (2004). Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler. Thromb. Vasc. Biol. 24, 288-293. https://doi.org/10.1161/01.ATV.0000114236.77009.06
  16. Lee, J.H., Lee, S.H., Choi, S.H., Asahara, T., and Kwon, S.M. (2015a). The sulfated polysaccharide fucoidan rescues senescence of endothelial colony-forming cells for ischemic repair. Stem Cells 33, 1939-1951. https://doi.org/10.1002/stem.1973
  17. Lee, S.H., Lee, K.B., Lee, J.H., Kang, S., Kim, H.G., Asahara, T., and Kwon, S.M. (2015b). Selective interference targeting of Lnk in umbilical cord-derived late endothelial progenitor cells improves vascular repair, following Hind limb ischemic injury, via regulation of JAK2/STAT3 signaling. Stem Cells 33, 1490-1500. https://doi.org/10.1002/stem.1938
  18. Lin, Y., Weisdorf, D.J., Solovey, A., and Hebbel, R.P. (2000). Origins of circulating endothelial cells and endothelial outgrowth from blood. J. Clin. Invest. 105, 71-77. https://doi.org/10.1172/JCI8071
  19. Masuda, H., Alev, C., Akimaru, H., Ito, R., Shizuno, T., Kobori, M., Horii, M., Ishihara, T., Isobe, K., Isozaki, M., et al. (2011). Methodological development of a clonogenic assay to determine endothelial progenitor cell potential. Circ. Res. 109, 20-37. https://doi.org/10.1161/CIRCRESAHA.110.231837
  20. Parzonko, A., Czerwinska, M.E., Kiss, A.K., and Naruszewicz, M. (2013). Oleuropein and oleacein may restore biological functions of endothelial progenitor cells impaired by angiotensin II via activation of Nrf2/heme oxygenase-1 pathway. Phytomedicine 20, 1088-1094. https://doi.org/10.1016/j.phymed.2013.05.002
  21. Prabakaran, S., Lippens, G., Steen, H., and Gunawardena, J. (2012). Post-translational modification: nature's escape from genetic imprisonment and the basis for dynamic information encoding. Wiley Interdiscip Rev. Syst. Biol. Med. 4, 565-583.
  22. Schaun, M.I., Eibel, B., Kristocheck, M., Sausen, G., Machado, L., Koche, A., and Markoski, M.M. (2016). Cell therapy in ischemic heart disease: interventions that modulate cardiac regeneration. Stem Cells Int. 2016, 2171035.
  23. Shen, C., Li, Q., Zhang, Y.C., Ma, G., Feng, Y., Zhu, Q., Dai, Q., Chen, Z., Yao, Y., Chen, L., et al. (2010). Advanced glycation endproducts increase EPC apoptosis and decrease nitric oxide release via MAPK pathways. Biomed. Pharmacother. 64, 35-43. https://doi.org/10.1016/j.biopha.2009.03.002
  24. Silvestre, J.S., and Levy, B.I. (2002). Angiogenesis therapy in ischemic disease. Arch. Mal. Coeur. Vaiss. 95, 189-196.
  25. Sukmawati, D., and Tanaka, R. (2015). Introduction to next generation of endothelial progenitor cell therapy: a promise in vascular medicine. Am. J. Transl. Res. 7, 411-421.
  26. Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., Pimentel, H., Salzberg, S.L., Rinn, J.L., and Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562-578. https://doi.org/10.1038/nprot.2012.016
  27. Vyas, D., Gupt, S., Dixit, V., Anita, K., and Kaur, S. (2015). To study the effect of curcumin on the growth properties of circulating endothelial progenitor cells. In Vitro Cell Dev. Biol. Anim. 51, 488-494.
  28. Wang, J.Y., Lee, Y.T., Chang, P.F., and Chau, L.Y. (2009). Hemin promotes proliferation and differentiation of endothelial progenitor cells via activation of AKT and ERK. J. Cell Physiol. 219, 617-625. https://doi.org/10.1002/jcp.21711
  29. Wang, Y.C., Peterson, S.E., and Loring, J.F. (2014). Protein posttranslational modifications and regulation of pluripotency in human stem cells. Cell Res. 24, 143-160. https://doi.org/10.1038/cr.2013.151
  30. Yamaguchi, J., Kusano, K.F., Masuo, O., Kawamoto, A., Silver, M., Murasawa, S., Bosch-Marce, M., Masuda, H., Losordo, D.W., Isner, J.M., et al. (2003). Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 107, 1322-1328. https://doi.org/10.1161/01.CIR.0000055313.77510.22
  31. Yoder, M.C., Mead, L.E., Prater, D., Krier, T.R., Mroueh, K.N., Li, F., Krasich, R., Temm, C.J., Prchal, J.T., and Ingram, D.A. (2007). Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109, 1801-1809. https://doi.org/10.1182/blood-2006-08-043471
  32. Zheng, H., Fu, G., Dai, T., and Huang, H. (2007). Migration of endothelial progenitor cells mediated by stromal cell-derived factor-1alpha/CXCR4 via PI3K/Akt/eNOS signal transduction pathway. J. Cardiovasc. Pharmacol. 50, 274-280. https://doi.org/10.1097/FJC.0b013e318093ec8f

Cited by

  1. 허혈성 심혈관 질환의 치료제로서 혈관내피전구세포(EPC)의 가능성에 대한 고찰 vol.30, pp.7, 2020, https://doi.org/10.5352/jls.2020.30.7.651
  2. Dronedarone hydrochloride enhances the bioactivity of endothelial progenitor cells via regulation of the AKT signaling pathway vol.25, pp.5, 2018, https://doi.org/10.4196/kjpp.2021.25.5.459