DOI QR코드

DOI QR Code

Comparison of conventional imaging techniques and CBCT for periodontal evaluation: A systematic review

  • Received : 2018.01.23
  • Accepted : 2018.05.29
  • Published : 2018.06.30

Abstract

Purpose: This study aimed to carry out a systematic review of studies in the literature comparing conventional imaging techniques with cone-beam computed tomography in terms of the role of these techniques for assessing any of the following periodontal conditions and parameters: infrabony defects, furcation involvement, height of the alveolar bone crest, and the periodontal ligament space. Materials and Methods: Interventional and observational studies comparing conventional imaging techniques with cone-beam computed tomography were considered eligible for inclusion. The MEDLINE and Embase databases were searched for articles published through 2017. The PRISMA statement was followed during data assessment and extraction. Results: The search strategy yielded 351 publications. An initial screening of the publications was performed using abstracts and key words, and after the application of exclusion criteria, 13 studies were finally identified as eligible for review. Conclusion: These studies revealed cone-beam computed tomography to be the best imaging technique to assess infrabony defects, furcation lesions, the height of the alveolar bone crest, and the periodontal ligament space.

Keywords

References

  1. Songa VM, Jampani ND, Babu V, Buggapati L, Mittapally S. Accuracy of cone beam computed tomography in diagnosis and treatment planning of periodontal bone defects: a case report. J Clin Diagn Res 2014; 8: ZD23-5.
  2. Noujeim M, Prihoda T, Langlais R, Nummikoski P. Evaluation of high-resolution cone beam computed tomography in the detection of simulated interradicular bone lesions. Dentomaxillofac Radiol 2009; 38: 156-62. https://doi.org/10.1259/dmfr/61676894
  3. Akesson L, Hakansson J, Rohlin M. Comparison of panoramic and intraoral radiography and pocket probing for the measurement of the marginal bone level. J Clin Periodontol 1992; 19: 326-32. https://doi.org/10.1111/j.1600-051X.1992.tb00654.x
  4. Renvert S, Badersten A, Nilveus R, Egelberg J. Healing after treatment of periodontal intraosseous defects. I. Comparative study of clinical methods. J Clin Periodontol 1981; 8: 387-99. https://doi.org/10.1111/j.1600-051X.1981.tb00888.x
  5. Suomi JD, Plumbo J, Barbano JP. A comparative study of radiographs and pocket measurements in periodontal disease evaluation. J Periodontol 1968; 39: 311-5. https://doi.org/10.1902/jop.1968.39.6.311
  6. Tugnait A, Clerehugh V, Hirschmann PN. The usefulness of radiographs in diagnosis and management of periodontal diseases: a review. J Dent 2000; 28: 219-26. https://doi.org/10.1016/S0300-5712(99)00062-7
  7. Arai Y, Tammisalo E, Iwai K, Hashimoto K, Shinoda K. Development of a compact computed tomographic apparatus for dental use. Dentomaxillofac Radiol 1999; 28: 245-8. https://doi.org/10.1038/sj.dmfr.4600448
  8. Ludlow JB, Davies-Ludlow LE, Brooks SL. Dosimetry of two extraoral direct digital imaging devices: NewTom cone beam CT and Orthophos Plus DS panoramic unit. Dentomaxillofac Radiol 2003; 32: 229-34. https://doi.org/10.1259/dmfr/26310390
  9. Mah JK, Danforth RA, Bumann A, Hatcher D. Radiation absorbed in maxillofacial imaging with a new dental computed tomography device. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003; 96: 508-13. https://doi.org/10.1016/S1079-2104(03)00350-0
  10. Batista WO, Navarro MV, Maia AF. Effective doses in panoramic images from conventional and CBCT equipment. Radiat Prot Dosimetry 2012; 151: 67-75. https://doi.org/10.1093/rpd/ncr454
  11. Aljehani YA. Diagnostic applications of cone-beam CT for periodontal diseases. Int J Dent 2014; 2014: 865079.
  12. OpenGrey.eu [Internet]. Vandoeuvre-les-Nancy Cedex: System for information on Grey Literature in Europe. [cited 2018 January 23] Available from: http://www.opengrey.eu.
  13. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6: e1000097. https://doi.org/10.1371/journal.pmed.1000097
  14. Leung CC, Palomo L, Griffith R, Hans MG. Accuracy and reliability of cone-beam computed tomography for measuring alveolar bone height and detecting bony dehiscences and fenestrations. Am J Orthod Dentofacial Orthop 2010; 137(4 Suppl): S109-19. https://doi.org/10.1016/j.ajodo.2009.07.013
  15. Vandenberghe B, Jacobs R, Yang J. Detection of periodontal bone loss using digital intraoral and cone beam computed tomography images: an in vitro assessment of bony and/or infrabony defects. Dentomaxillofac Radiol 2008; 37: 252-60. https://doi.org/10.1259/dmfr/57711133
  16. Misch KA, Yi ES, Sarment DP. Accuracy of cone beam computed tomography for periodontal defect measurements. J Periodontol 2006; 77: 1261-6. https://doi.org/10.1902/jop.2006.050367
  17. Pinsky HM, Dyda S, Pinsky RW, Misch KA, Sarment DP. Accuracy of three-dimensional measurements using cone-beam CT. Dentomaxillofac Radiol 2006; 35: 410-6. https://doi.org/10.1259/dmfr/20987648
  18. Mol A, Balasundaram A. In vitro cone beam computed tomography imaging of periodontal bone. Dentomaxillofac Radiol 2008; 37: 319-24. https://doi.org/10.1259/dmfr/26475758
  19. Grimard BA, Hoidal MJ, Mills MP, Mellonig JT, Nummikoski PV, Mealey BL. Comparison of clinical, periapical radiograph, and cone-beam volume tomography measurement techniques for assessing bone level changes following regenerative periodontal therapy. J Periodontol 2009; 80: 48-55. https://doi.org/10.1902/jop.2009.080289
  20. de Faria Vasconcelos K, Evangelista KM, Rodrigues CD, Estrela C, de Sousa TO, Silva MA. Detection of periodontal bone loss using cone beam CT and intraoral radiography. Dentomaxillofac Radiol 2012; 41: 64-9. https://doi.org/10.1259/dmfr/13676777
  21. Qiao J, Wang S, Duan J, Zhang Y, Qiu Y, Sun C, et al. The accuracy of cone-beam computed tomography in assessing maxillary molar furcation involvement. J Clin Periodontol 2014; 41: 269-74. https://doi.org/10.1111/jcpe.12150
  22. Walter C, Weiger R, Zitzmann NU. Accuracy of three-dimensional imaging in assessing maxillary molar furcation involvement. J Clin Periodontol 2010; 37: 436-41. https://doi.org/10.1111/j.1600-051X.2010.01556.x
  23. Mengel R, Candir M, Shiratori K, Flores-de-Jacoby L. Digital volume tomography in the diagnosis of periodontal defects: an in vitro study on native pig and human mandibles. J Periodontol 2005; 76: 665-73. https://doi.org/10.1902/jop.2005.76.5.665
  24. Umetsubo OS, Gaia BF, Costa FF, Cavalcanti MG. Detection of simulated incipient furcation involvement by CBCT: an in vitro study using pig mandibles. Braz Oral Res 2012; 26: 341-7. https://doi.org/10.1590/S1806-83242012000400010
  25. Reddy MS, Aichelmann-Reidy ME, Avila-Ortiz G, Klokkevold PR, Murphy KG, Rosen PS, et al. Periodontal regeneration - furcation defects: a consensus report from the AAP Regeneration Workshop. J Periodontol 2015; 86(2 Suppl): S131-3. https://doi.org/10.1902/jop.2015.140379
  26. Jervoe-Storm PM, Hagner M, Neugebauer J, Ritter L, Zoller JE, Jepsen S, et al. Comparison of cone-beam computerized tomography and intraoral radiographs for determination of the periodontal ligament in a variable phantom. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109: e95-101.
  27. Ozmeric N, Kostioutchenko I, Hagler G, Frentzen M, Jervoe-Storm PM. Cone-beam computed tomography in assessment of periodontal ligament space: in vitro study on artificial tooth model. Clin Oral Investig 2008; 12: 233-9. https://doi.org/10.1007/s00784-008-0186-8
  28. Kim JH, Arita ES, Pinheiro LR, Yoshimoto M, Watanabe PC, Cortes AR. Computed tomographic artifacts in maxillofacial surgery. J Craniofac Surg 2018; 29: e78-80.

Cited by

  1. Deep Learning for the Radiographic Detection of Periodontal Bone Loss vol.9, pp.None, 2018, https://doi.org/10.1038/s41598-019-44839-3
  2. Ex vivo comparison of CBCT and digital periapical radiographs for the quantitative assessment of periodontal defects vol.24, pp.1, 2018, https://doi.org/10.1007/s00784-019-02933-w
  3. Two decades of research on CBCT imaging in DMFR - an appraisal of scientific evidence vol.50, pp.4, 2018, https://doi.org/10.1259/dmfr.20200367
  4. Testing regression and mean model approaches to facial soft-tissue thickness estimation vol.61, pp.3, 2018, https://doi.org/10.1177/0025802420977018