DOI QR코드

DOI QR Code

Unknown-Parameter Identification for Accurate Control of 2-Link Manipulator using Dual Extended Kalman Filter

2링크 매니퓰레이터 제어를 위한 듀얼 확장 칼만 필터 기반의 미지 변수 추정 기법

  • Seung, Ji Hoon (Division of Electronic Engineering, Chonbuk National University) ;
  • Park, Jung Kil (Robodyne Systems. Co.) ;
  • Yoo, Sung Goo (Mechanical and fusion Systems Engineering, Kunsan National University)
  • 승지훈 (전북대학교 전자공학과) ;
  • 박정길 (로보다인시스템) ;
  • 유성구 (군산대학교 기계융합시스템공학부)
  • Received : 2018.04.13
  • Accepted : 2018.06.20
  • Published : 2018.06.28

Abstract

In this paper, we described the unknown parameter identification using Dual Extended Kalman Filter for precise control of 2-link manipulator. 2-link manipulator has highly non-linear characteristic with changed parameter thought tasks. The parameter kinds of mass and inertia of system is important to handle with the manipulator robustly. To solve the control problem by estimating the state and unknown parameters of the system through the proposed method. In order to verify the performance of proposed method, we simulate the implementation using Matlab and compare with results of RLS algorithm. At the results, proposed method has a better performance than those of RLS and verify the estimation performance in the parameter estimation.

본 논문은 듀얼 확장 칼만 필터를 기반으로 2링크 매니퓰레이터의 정밀한 제어를 위한 미지 변수 추정법을 제안한다. 2링크 매니퓰레이터 시스템은 기구학 및 동역학 방정식에 비선형성을 가지며 내부 파라미터의 변화에 민감한 특성을 보인다. 이러한 시스템의 경우 내부 미지 파라미터의 추정이 매우 중요하다. 특히 거친 환경에서 작업을 수행함에 있어서 중량과 관성행렬의 변화는 시스템을 불안정하게 만드는 요소이다. 따라서 본 논문에서 제안한 방법을 기반으로 시스템의 상태 및 미지 변수를 동시에 추정하여 앞서 소개한 문제점들을 해결하고자 한다. 제안한 방법은 Mathwork에서 제공하는 Matlab 기반으로 시뮬레이션을 수행했고, 그 결과는 RLS 알고리즘과 비교하여 성능을 분석하였다. 제안된 방법은 상태 및 미지 변수 추정에 RLS 방법보다 뛰어난 추정 성능을 보임을 확인 하였다.

Keywords

References

  1. Y. H. Chen & S. Pandey, (1990). Uncertainty bounded-based hybrid control for robot manipulators, IEEE Transactions on Robotics and Automation, 6(3), 303-311. DOI : 10.1109/ICAR.1991.240529.
  2. D. T. Lee, M. Morf & B. Friedkander. (1981). Recursive least - squares ladder estimation algorithm. IEEE Trans. Acoust Speech. Signal Processing, 29, 627-641. https://doi.org/10.1109/TASSP.1981.1163587
  3. Bing X., Shen Y. & Okyay K., (2016). Tracking Control of Robotic Manipulators With Uncertain Kinematics and Dynamics. IEEE Transactions on Industrial Electronics, 63(10). 6439-6449. DOI : 10.1109/TIE.2016.2569068
  4. Jafarov, E. M., Parlakci, M. A., & Istefanopulos, Y. (2005). A new variable structure PID-controller design for robot manipulators. IEEE Transactions on Control Systems Technology, 13(1), 122-130. DOI : 10.1109/TCST.2004.838558
  5. Ayala, H. V. H., & dos Santos Coelho, L. (2012). Tuning of PID controller based on a multiobjective genetic algorithm applied to a robotic manipulator. Expert Systems with Applications, 39(10), 8968-8974. DOI : 10.1016/j.eswa.2012.02.027
  6. Perez, J., & de la Fuente, M. S. L. (2017). Trajectory Tracking Error Using Fractional Order PID Control Law for Two-Link Robot Manipulator via Fractional Adaptive Neural Networks. In Robotics-Legal, Ethical and Socioeconomic Impacts. InTech. DOI : 10.5772/intechopen.70020
  7. Kumar, V., & Rana, K. P. S. (2017). Nonlinear adaptive fractional order fuzzy PID control of a 2-link planar rigid manipulator with payload. Journal of the Franklin Institute, 354(2), 993-1022. DOI : 10.1016/j.jfranklin.2016.11.006
  8. S. Li, Y. Zhang, & L. Jin. (2017). "Kinematic Control of Redundant Manipulators Using Neural Networks," IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2243-2254. DOI : 10.1109/TNNLS.2016.2574363
  9. R. M. Robinson, C. S. Kothera, R. M. Sanner & N. M. Wereley. (2016), "Nonlinear Control of Robotic Manipulators Driven by Pneumatic Artificial Muscles," IEEE/ASME Transactions on Mechatronics, 21(1), 55-68. DOI : 10.1109/TMECH.2015.2483520
  10. T. G. Thuruthel, E. Falotico, M. Manti & C. Laschi. (2018) "Stable Open Loop Control of Soft Robotic Manipulators," IEEE Robotics and Automation Letters, 3(2), 1292-1298. DOI : 10.1109/LRA.2018.2797241
  11. W. He, H. Huang & S. S. Ge. (2018) "Adaptive Neural Network Control of a Robotic Manipulator With Time-Varying Output Constraints," IEEE Transactions on Cybernetics, 47(10), 3136-3147. DOI : 10.1109/TCYB.2017.2711961
  12. M. Jin, S. H. Kang, P. H. Chang & J. Lee. (2017) "Robust Control of Robot Manipulators Using Inclusive and Enhanced Time Delay Control," IEEE/ASME Transactions on Mechatronics, 22(5), 2141-2152. DOI : 10.1109/TMECH.2017.2718108
  13. Y. Ouyang, W. He, & X. Li. (2016) "Reinforcement learning control of a single-link flexible robotic manipulator," IET Control Theory & Applications, 11(9),1426-1433. DOI : 10.1049/iet-cta.2016.1540
  14. S. Y. Oh. (2015) "Decision Tree State Tying Modeling Using Parameter Estimation of Bayesian Method," Journal of Digital Convergence, 13(1), 243-248. https://doi.org/10.14400/JDC.2015.13.1.243
  15. K. J. Park. & D. Y. Lee. (2016) "Nonlinear Inference Using Fuzzy Cluster," Journal of Digital Convergence, 14(1), 203-209. https://doi.org/10.14400/JDC.2016.14.1.203
  16. T. Yu. & Y. Zhai. (2014) "HW/SW Co-design of a Visual Driver Drowsiness Detection System," Journal of Convergence for Information Technology, 14(1), 31-39.
  17. K. S. Ahn, J. H. Kim & B. H. Lee. (2017) "Action Realization of Modular Robot Using Memory and Playback of Motion," Journal of Convergence for Information Technology, 7(6), 181-186. https://doi.org/10.22156/CS4SMB.2017.7.6.181
  18. Aksoy, S., Muhurcu, A., & Kizmaz, H. (2010, September). State and parameter estimation in induction motor using the Extended Kalman Filtering algorithm. In Modern Electric Power Systems (MEPS), 2010 Proceedings of the International Symposium. 1-5.
  19. S. Haykin, (2001). Kalman Filtering and Neural Networks. DOI : 10.1002/0471221546